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ABSTRACT 

In general, business, underwriting firms usually write policy terms by imposing additional 

deductible conditions in order to mitigate the risk of loss and discourage frivolous claims by 

modifying the indemnity payable by the underwriter where loss occurs. Under deductible 

conditions, underwriting firms will only be liable in a loss event where it becomes apparent 

that the loss has exceeded the deductible defined in the policy terms. The maximum 

accumulated number of losses retained by the insured applying deductible policy 

modifications is usually set as part of the terms and conditions of the policy documents. 

This paper develops an analytical framework for evaluating the effect of structural 

properties of dirac-delta on insurance risk variables with deductible clauses. The objective is 

to obtain models for the excess of loss random variable in a payment event. In order to 

achieve this and create analytically sound theoretical platform of investigating payment 

distribution functions, the quantum structure of dirac-delta is first examined in respect of 

probability density function. The import of adopting the dirac-delta function in this paper 

lies in its elegance to permit alternative technique to obtain analytically useful models for 

insurance severity beneficial to both the insured and insurer with particular reference to 

rate relativity deductible clause. We then obtained insurance excess of loss severity and 

variance for an arbitrary policy under deductible coverage conditions. As part of our 

contributions, theorems in respect of loss were stated and proved for underwriters to see 

reasons for their applications and use in policy underwriting decisions. 

 
Keywords: Cost per loss, deductible, loss elimination ratio, risk, severity 

DOI. http://doi.org/10.4038/jsc.v12i2.32 
 

 

1. INTRODUCTION TO SINGULARITY FUNCTIONS 

 

In practice, underwriting firms are bound by set targets for claim out-go by using the 

claims values already recorded and then use it in projecting the frequency of claims in 
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respect of the uncertain periods. The potential insurance risk associated with allocation of 

insurance funds necessitates the need for deep actuarial estimation techniques. Insurance 

funds are usually invested in many debt and market instruments with the goal of 

generating real returns on investment so as to meet claim obligations criteria and 

solvency requirements. In [1] we see that the insurance expected loss associated with 

both claim per payment and claim per loss which form the basis of this paper is 

responsible to a large extent for a meaningful fraction of the aggregate liability of the 

underwriting firms and consequently, the loss is associated with claims demand and 

uncertainties linked to it through which the insurance schemes provoke the underwriter to 

forfeiture. Usually, underwriters are frequently engaged in the administration of issues 

relating to the expected claim liability estimation and in order to deal with these issues, 

underwriting firms will have to apply actuarial techniques of estimation to obtain critical 

information over the uncertainties on the liabilities in order to ensure decisive actions 

relating to the expected claim, payout targets and future insurance pricing. Insurance 

firms are now groping to cope with the current problems of underwriting risk 

phenomena, regulatory risk trajectories, solvency requirements risk and demand for 

insurance policies, market share syndrome, risk management, investment risk and claim 

payment strategies.  

It is imperative to note from the foregoing that the issue of satisfying claim payment 

terms and conditions has become a hydra-headed problem to the underwriters even 

though the scheme holders want a financial succor in the event of contingencies as 

defined in the policy terms happen. We infer from [1-2] that the estimation of claim per 

payment of the insurance policies allow the risk manager to take drastic actions on claim 

payment devoid of significant error that could evolve out of the problems already 

enumerated hitherto and consequently it is objective of this paper to apply expectation 

and singularity potential theory as working tools to model insurance claims in order to 

estimate the expected claim per payment liabilities in non-life insurance contracts. This is 

done by developing a link between singularity and actuarial modeling and fix an actuarial 

model which provides financial arrangements to cover the expenses resulting from the 

actuarial treatments of insurance losses. The occurrence of a loss event is a necessary 

condition for advising a claim.  

In other to model an insurance loss, the event surrounding the loss must be well defined 

such that it does not have too much exposure to risk. Correspondence in the analysis of 

loss coverage usually assumes a rigorous dimension which could conceal the ease of the 

underlying idea but the dirac-delta function serves to exemplify much of the difficult 

expression which is the key tool used to deal with actuarial principles involved and to 

represent magnitude of insurance loss. In this paper, we will apply the dirac-delta 

function to obtain the expected cost per payment claim severity under deductible 

conditions and the variance of the cost per payment loss event under the deductible 

coverage modifications. Note that the effect of the insured’s characteristics on payment 

amounts functionally depends on the cost sharing arrangements implied by the deductible 
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clauses such that preference for a small deductible could reflect an anti-selective 

tendency on the part of the scheme-holders. 

In [1-2], it is asserted that dirac-delta function exists naturally in the solution of financial 

problems but it is often applicable in actuarial risk theory and statistical physics to obtain 

the distribution of an ideal point mass as a function equal to zero everywhere except for 

zero and whose integral in the entire real line becomes unity. The behavior of the dirac-

delta function is such that it is not a real valued function but only a notation  z which 

for apparently defined reasons is considered as if it were a function. The dirac-delta 

function becomes useful in dealing with a defined notation when addressing quantities 

associated with some kind of infinity and precisely it is deeply related to an eigen 

function corresponding to an eigenvalue in the continuum that is non-normalizable. The 

dirac-delta function is treated as the extension of the Kronecker delta function in the 

event of the continuous variables. Geometrically, the dirac-delta describes the trajectory 

of a curve whose width approaches nullity and narrow trough roughly approaching 

infinity while maintaining the area under the curve finite. From its behaviour, it is a real 

function of z which becomes zero everywhere except on the inside of a small interval of 

length  about the centre 0s  but it is extremely bigger in this interval such that its integral 

over the same interval approaches unity. Following inferences by authors in [1-2], the 

dirac-delta function plays fundamental roles in actuarial risk theory under the appropriate 

limit especially in the evaluation of improper integrals involved in probability.  In view 

of observations by authors in [3-4], important applications of dirac-delta were 

demonstrated in mathematical statistics and probability theory under univariate and 

multivariate framework. The unit impulse function otherwise called dirac-delta  z as 

observed by authors in [1-2;4-5] and which finds applications recently in actuarial risk is 

a distribution function rather than a true function and it is only defined within an integral 

on the extended real line. The function is designated generalized real function but does 

not actually qualify for the characteristics of a real function.  

 

However, in the Schwartz theory of distributions, the function is applied in the evaluation 

of an integral kernel of some distribution. Following observations by authors in [1;6-8], it 

is observed that  z  has singularity at a point on the real line where the integral over 

the extended real line of the product of a function and dirac-delta produces the functional 

value of the function at that point. Following the definitions by authors in [1;3;9], dirac-

delta permits wider spectrum of applications to describe the singularity characteristics of 

probability distributions used in statistical mechanics especially in quantum theory. 

 

The dirac-delta function is defined in the work of the authors in [1;3;8-11] as follows 

   η

,if,z

0,if,z
z z


   



 
    


 and    

0

δ dz δ dz 1z z 
 



     ,   (1) 

https://en.wikipedia.org/wiki/Point_mass
https://en.wikipedia.org/wiki/Function_of_a_real_variable
https://en.wikipedia.org/wiki/Integral
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the integral is defined over the extended real line. If 0  , we have 

 
,if,z 0

0
0,if,z 0

z
 

  


 and  δ 0 dx 1z





  ,

  (2)

 

       0 0 0z f z z f    . 

Furthermore, a particular situation where the product is often defined is that of an 

integrable real valued function with a dirac-delta structure as long as the real valued 

function has been well defined at the points of singularities of the dirac-delta. 

Considering the behavior of the delta function, this is equal to multiplying it by a real 

number, the value of the integrable real function at the singular point of the delta 

function.  

       z f z z f      
   (3) 

Borrowing from continuous time finance, we can apply complex representation to define 

dirac-delta function 

e e sin
lim e dh lim 2 lim

A ihz ihz
ihz

A A A
A

Az

iz z






  


     
      

   
  (4)

 

As A becomes large,  

 
sin Az

z
z




     (5)
 

   
1

lim e dh 2 lim e dh
2

A A

ihz ihz

A A
A A

z z 
 

 

   
     

   
   (6)

 

As z becomes very large without bounds, we have 

 

sin
dz 1

Az

z





 and  
   

sin
f dz 0

Az
z f

z





 
 

 
   (7)

 

 

But when as z approaches zero becoming smaller we have  

sin Az Az A

z z  
 

     (8) 

 

In this section, we use second order differential equation to explain how direct-delta 

function evolves, as most problems in actuarial risk literature encounter derivation of 

models for general insurance and casualty. It is on this basis that we use singularity 

functions to investigate the behavior of actuarial density functions to enable us obtain 

models applicable in general insurance business. 

 

Recall in the work of the author in [1] that, the linear equation,  1 2 3a a f sb z z z    , is 

deeply rooted in many areas of actuarial discipline, especially in financial engineering 

where it has been used to analyze the term structure and varying time parameters of interest 
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rates by setting the forcing function   0sf  and further assuming that the homogeneous 

differential equation 1 2 3 0b z b z b z     has equal real roots with constant co-

efficient i ,i 1,2,3b  . Following definitions by authors in [1;5;8;9;11], one of the most 

simplest but striking application of integral transform occurs in the treatment of linear 

differential equations with jump discontinuities or discontinuous forcing functions 

especially in the analysis of circuit problems and mechanical vibrations. 

  

Recall the definitions by the author in [1] that in the second order differential equation 

above,  sf  is a measure of forcing term and the total area under the curve 

   










a

a
a

dssflimdssf     (9)  

is the impulsive force. 

We define the function  

 
0 0

η 0

1
,if,s η <s η

2ηs

0,if, otherwise

s
s


  

  



 and  η 0s ds 1s




     (10) 

where η>0  

         
0 0

0 0

s η s η

η 0 0 0

s η s η

1 1
s f s ds f s ds s η s η f s

2η 2η
s

 

 

        (11) 

     
0

0

s η

s η

1 2η
f s ds f s f s

2η 2η





  , using the mean value theorem (12) 

   η 0 0 0η 0, s s ,s ss s          (12a) 

         η 0 η 0
η 0 η 0
lim s f s ds limf s lim s f s ds

x
s s 

 

  
 

 
       

 
   (13) 

Since  f s is well behaved having a unique value at every point in its domain 

     0 0s f s ds f ss




       (14) 

and setting 0s 0 , then from equation (15) the dirac-delta function becomes valid in an 

interval when a rule that integrates its product with another continuous function is 

assigned hence  

     0 f s ds f 0s




      (15) 

Furthermore, following the definition of the author in [12],  

 

     s s ds             (16) 
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The integral value1 and the limiting value 0  both define the value of dirac-delta function 

δ which has a value 1 when 0s   and 0  if otherwise.      0, δ s s f s ds f sif





  , 

 0ssδ   is the kernel of the integral transform describing the dimensions of a rectangular 

paralleliped of length 2η  and height 
2η

1
and centered at 0s  so that the area of the 

paralleliped will be 1.  0ssδ   isolates the real value of  sf  at some prescribed point 0s  

by the normalizing property of dirac-delta function, 

 

   δ δs s  and    s sδssδ    (17) 

  

       δ s s ds δ s s ds 1 δ t dt 1, when t s s

  

  

         
 (18) 

Following the work of the author in [11], we let  f z  be a function on which shift 

operator is defined as  

        E f z f z E f z f z          (19) 

Define the function      G f z dz  




   where  z  is taken from the space of test 

function. If we assume that the functional  G  corresponds to  f z , then  E G   

corresponds to  E f z , therefore 

         E G f z z dz f z z dz  
 



 

    
  (20)

 

where    E G G E   , if we invoke this definition on the dirac-delta function, then 

we have,  

         E z z dz z      






         (21) 

 

2.0 APPLICATION OF DIRAC-DELTA TO PROBABILITY DENSITY  

      FUNCTIONS 

 

In this section the goal is to test dirac-delta function on arbitrary random risk, to enable 

us apply it on excess of loss random variable. In view of the work of the authors in [13-

14], the function  f z  defines the final pay-off to a unit linked insurance which is 

maturing at time z . Consider a case where the origin has been shifted from zero to 

another point 0s , we have 
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1 0 2sz z  ,             
2 2 2

1 1 1

0 0 0 0 0s s s s s

z z z

z z z

z f z dz z f dz f z dz           (22) 

          
2

1

0 0 0s s 1 s

z

z

z f z dz f z f       ,    (23) 

 .  is the Laplace transform of  z . 

 
 

The point 0sz   is a contribution of the integral in equation (22), that is the first term of 

the Taylor’s series expansion of  f z at the point 0sz   and which vanishes at all other 

functional values. Again, substituting 0s 0 , we have 

             
2

1

0 0 1 0 1 0

z

z

z f z dz f f f          (24) 

In view of the work of the author in [2], if  H z  is the unit step function,  

then  

 
 dH z k

z k
dz




      (25) 

Now  ZF z is the distribution function of a random risk Z  with the property  

that   

 
 Z

Z

dF z
f z

dz
      (26)  

Define      
i Z

Z i i

z

F z P z H z z


  , where Z  is the support of Z . By the above 

property, 

 

 
       

i Z i Z

Z

i i i i

z z

dF z d d
P z H z z P z H z z

dz dz dz 

   
        

   
   (27) 

so that the probability density function is obtained as 

 

 
     

i Z

Z

Z i i

z

dF z
f z P z z z

dz




      (28) 

where   1, 2, 3, ...iZ
z i   and  iP z are the mass points. Since the finite moments of the 

density function exists, then the average value of the random risk Z  can be computed 

using the moments. 

     
i Z

Z i i

z

Z zf z dz P z z z zdz
 

 

 
   

 
    (29) 
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       
i Z i Z

i i i i

z z

Z P z z z zdz P z z z z dz 
 

  

   
      

   
   ,

 
(30) 

since  Zf z z . 

     
Z i Z

i i i i

z z

Z P z z z zdz z P z


 

  
     

   
  .   (31) 

     2 2 2

i Z

Z i i

z

Z z f z dz P z z z z dz
 

 

 
   

 
  .  (32) 

     2 2 2

i Z i Z

i i i i

z z

Z P z z z z dz z P z


 

 
   
 
  .   (33) 

     

2

2 2

i Z i Z

i i i i

z z

Z Z Z ZVa z P z z zr P
 

   
      

   
   . (34) 

Hence the first two moments and variance are well defined. Furthermore, we can use the 

following approximation. 

   

     
2

1

2 1 2 1

2 1
2 1

1

2 1 2 1

2
lim lim

z

Z Z
z

Z
z z z z

z zz f z dz f z z

z z f z dz
z z z z






 


    
    
          
   
    




(35) 

     
2 1

2 1
1 1lim

2
Z Z Z

z z

z z
z z f z dz f f z






  
    

  
       (36) 

and dirac-delta function is a useful technique in this kind of estimation. 

 

2.1 Underwriting control measures 

  

In view of the work of the authors in [13-20], we observe that as a result of the 

consequences of the implicit cost such as moral hazard, underwriters have come up with 

loss control techniques to off-set these hidden costs from insurance contracts and 

discourage frivolous claims. 

 

Let  a s define the value of a non-life insurance portfolio at a time s . The amount of 

loss in the interval  

 ,s s s  is given by      ,a s a s s l s s s     ; (37) 

     
 

 , ,a s a s s l s s s l s s s
a s

s s s

  

  

    
   . (38) 

 

Thus, if at times s t   , then  
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         
t s s t s s

a s a t a a t
t t t t

 
 

   

    
    

    
  (39) 

          t s a s a t a s t          (40) 

           
   

a s a a t a a t a s
a a s

s t t s

 


 

  
    

  
  (41) 

implying the differentiability of  a s . If the unit time is being discretized as  

ks k s ,  0k Z      (42) 

then  

          1 1, 1k k k kl s s a s a s a k s a k s        (43) 

 

2.2 Theorem 1: Suppose  a s is a portfolio of non-life insurance policies and assume 

the scheme-holder incurs losses at a rate  a s  such that    a s a s    where   is 

constant. Let s define the probability that a policy holder incurs losses in an 

infinitesimal time of s and define  s  to be the probability that the scheme holder 

does not incur losses at time s , then for any  ,s s s   ,    h s h    where h is a 

real probability density function  

 

Proof: By definition  s s   is the probability that the scheme holder does not incur 

losses at time s s given that he has not incurred losses at time s and consequently 

  

     1s s s s          (44) 

which implies  

     s s s s s           (45) 

   
 

s s s
s

s

  




 
       (46) 

   s s        (47) 

this defines an exponential solution pattern as observed in the conclusion by the author in 

[21] and this informs why we apply exponential distribution in our analysis. Then by 

definition, it is clear that  

   s h s   ,  
 h s

s


     (47a)  

If  h s is the probability density function of incurring losses at time s , then   

 
 

d s
h s

ds


      (48) 
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    
 

 

     

1 1

s s s s

s s

s s

s

d
s s s d d

d

h d s s s

 



 
      



    

 



        

  

 



 (49) 

      
s s

s

h d h s h s s



   


      (49a) 

By the mean value theorem, 

     
s s

s

h d s h



   


 ;  ,s s s     (50) 

        s h h s h s s         (50a) 

   h s h        (50b) 

 

The distribution of the random loss in (37) to the underwriting firm is enumerated below 

Z assumes the loss incurred in a loss event when there is no deductible but does not 

functionally depend on deductible and LZ defines the amount incurred in a loss event 

under deductible while pZ  is the cost per payment in a payment event under deductible 

modifications. The loss event describes the condition of a loss but payment event is a 

condition where an underwriter incurs a fraction of a loss or wholly liable to pay 

everything. In practice, insurance data are only available on incurred payments. 

Following the work of the authors in [19-20; 22-25] when Z c , the underwriter will 

repudiate claim advised except on ex-gratia basis to boost its goodwill and information 

content on losses will not be available thereby creating problems in insurance analysis.  

However, under deductible terms and conditions, the excess of loss random variable is 

only captured to the extent that the information content on LZ is truncated. 

 

As observed in the definitions by authors in [13;24;26-30], deductibles describe 

intermediate insurance transfer technique between total loss transfer and self-insurance to 

an underwriter. It has been applied to arouse interest of a few medium-sized employers 

but the rationale behind the attractiveness does not usually fall in line with the aims of 

insurance regulators and issues are usually raised by workers’ union generally which 

need to be resolved. An insured with a per loss deductible c  will repudiate claims 

whenever the claim of size Z  falls short of or equal to the deductible c . However, when 

the claim value rises above the value c , the underwriter will pay the excess  Z c The 

amount of loss covered by the underwriter and paid out as claim size in the loss event is 

defined in [1-2] by 

L

0 Z c

Z>c
Z

Z c


 


      (51) 
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L L,0Z Z z       (52) 

 L cZ Z


   where 
0 Z 0

Z>0
Z

Z



 
    (53) 

Z

Z

Z for c
Z

c for c



 

      (54) 

This is the amount retained by the insured 

   L

0

c Pr c dzZ Z Z z




    

    (55) 

If        LPr 0 F cZZ        (56) 

Then LZ has a probability mass point at zero of  FZ c and hence 

   
L

f f cZ ZZ z  for z     (57) 

 

The expected value function allows us to assess which losses from the risks, the 

insurance firm will bear in quantitative terms The random variable  Z c


  describes the 

amount by which Z  is greater than the threshold ceiling c ,  

   Z

c

Z c S d 



       (58)

  

where    max ,0 

 . Furthermore,  

      lim lim max ,Z
c c

c

Z c c S d E Z c Z 


 
       

  (59) 

   
 

0

Pr
,Z Z

z Z z z
Z zf z dz f z

z





   
 

  (60) 

where . is the average value function.  

We assume the existence of a positive differentiable non decreasing function of finite 

integral  

   
0

z dF z


            (61) 

           
0 0 0

Z Z Zz z dF z z d f z dz F z  
   

    
 

        (62)

 

              
0

1 0 1 0 1Z Z Zz F F F d z   


                   (63)

 

           0 0, 0 1 0 0, , 1 0, 1Z Z ZF and F F                   (64)
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      
0

1 Zz F d z 


       (65)

 

Suppose  p z is the payment function, then 

        
0

1 , 0 0p z F z dp z p



       (66)

 

If  p z   , then the mean loss implies that  

    
0

1 p z dp z



       (67)

 

By definition,   

    1 Z Z

c c

F z dz S z dz

 

        (68)

 

    
L

c , 0Z ZF z F z z       (69) 

    
L

cZ ZS z S z 
     (70)

 
   

   

       

L

L

L

0

max 0, min ,
f dz

f dz= f dz

Z

z Z

c

Z c Z c
Z z z

z z

z z z c z





 


   





 
  (71) 

                    L | 1Z Z c Z Z

c c c

Z z c dF z z c F z F z dz F z dz

  

           (72) 

 

3.0 MATERIAL AND METHODS 

The dirac-delta technique has been pesented as a novel advanced method to model 

insurance severity in order to usher in fresh light into the puzzling investigations in 

actuarial literature that parametric models tend to equally solve when deductible clauses 

are built into insurance contracts. The conditional excess of loss random variable remains 

valid provided there is a payment.  

  |pZ Z c Z c         (73)

 | 0p L LZ Z Z       (74)

 
 

       L | 0 0 | 0 0L L L L L LZ E Z Z P Z E Z Z P Z     
    

 

     L 0 | 0 0 0L L L P LZ E Z Z P Z Z P Z     
 (75) 
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       
L L

c 0 cZ Z Z ZF z F z F F   
   (75)

 
       

L L
c 0 cZ Z Z ZS z S z S S   

   (76)
 

   0
LL P Z P ZZ Z S Z S c 

    (77) 

 

 

 

 

 

max 0, min ,
L

P

Z Z Z

Z c Z cZ
Z

S c z S c z S c


  

   (78) 

 
 

  
 

  
 

 

  
,

1 1 1p p

Z z Z

Z Z

Z Z Z

F z c f z c S z c
f z S z

F c F c F c

   
  

  
  (79) 

     
 

  
 

 

     P

0 0
1 1 1

Z Z L

P z

Z Z Zc

dF z c dF z z
Z z dF z z z c

F c F c F c

  
    

    
(80) 

  
   

  
   

m m
* *

j j j j

j 1 j 1c c

1 1
c P δ dz= P c δ dz

1 1
P

Z Z

Z Z Z z Z Z z
F c F c

 

 

    
 

  
           

 

 

        

m m m
* *

j j j j j

j 1 j 1 j 1

P c P c P

 
1 1 1

P

Z Z Z

z z

Z
F c F c F c

  



  
  

  

   (81) 

 

        

m m
* *

j j j j m
j 1 j 1

j

j 1

P c P
c

 , P 1
1 1 1

P

Z Z Z

z z

Z
F c F c F c

 





   
  

 


  (82) 

 

     

m m
* *

j j j j

j 1 j 1

P c P
c

 

1 1 1

P c c c

Z Z Z

z z

Z

f t dt f t dt f t dt

 

  



  
     
       

     

 

  

 

(83) 

 

     

m m
* *

j j j j

j 1 j 1

0 0 0

P c P
c

 

1 1 1

P c c c

Z Z Z

z z

Z

f t dt f t dt f t dt

 



  
     
       

     

 

  

 (84)

 

 

Based on the use of the density function in equation (84), we state and prove the 

following theorem. 

 

3.1 Theorem 2:  

Let 
 

0

1

with probility p
Z

B with probability p


 


   (85) 
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then p can be estimated as  

(i)
   

 
Z B

B

F t F t
p

S t

 
   
 

 ;     (86) 

(ii) 
 

 
Z

B

f t
q

f t
  .      (87) 

Proof 

Let    
 

0

1 1B

having probability p
I

having probability p


 


    (88) 

be the indicator function of the random loss B . 

 

Hence BZ BI . Suppose 0B   is the loss event, but if 0BI  , then 0Z  .  

For any real 0t  ,  

     Pr 0 1 Pr 0 1Zf t dt t t





         (86) 

           Pr Pr 0 Pr | 0 Pr 1 Pr | 1

t

Z B B B Bf s ds Z s I Z s I I Z s I


           

(87) 

         Pr 0 Pr | 0 Pr 1 Pr | 1

t

Z B B B B B Bf s dt I BI s I I BI s I


         (88) 

             Pr 0 1 Pr 1

t

Z Bf s ds p s p B s p p F s


          (89) 

         
0

Pr 0 1 Pr

t

Zf s ds p s p B s        (90) 

               1 1 1Z B B B B BF s p p F s p F s F s p S s F s            (91) 

   

 
Z B

B

F s F s
p

S s

 
  

 
    (92) 

From equation (91),  

             1 1Z B Z B BF s p F s f s p f s qf s        (93) 

 

 
Z

B

f s
q

f s
      (94) 

 

3.2 Theorem 3: As a consequence of the application of expected value function, we also 

state and prove the following. If 0Z  is a random risk and let  Z  be a differentiable 

function of Z such that  
0

lim 0
Z

Z


 , then 
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          
0

Pr PrE Z Z Z s ds Z Z s ds  
 



        (95) 

Proof: 

Let     
1

0
Z s

for Z s
I

elswhere



 


    (96) 

Then by definition,  

   PrZ sE I Z s        (97) 

 
 

 

       
0 0

0 0

Z Z

Z s

d s
s I ds ds d s ds

ds

Z Z Z


 

   







   

   

  
   (100) 

            
0 0

Z Z

Z s Z s Z sE s I ds E s I ds s E I ds E Z   


  



 
     

 
     (101) 

      
0

Pr

Z

Z sE s I ds s Z s ds 






 
   

 
     (102) 

         
0 0

Pr

Z

Z sE s I ds s Z s ds E Z  




 
    

 
   (103) 

The distribution of loss above shows the probability of a defined magnitude coupled with 

the probability of a particular loss exceeding or falling under a certain loss. The 

distribution of loss can then be employed to calculate both the expected loss excess of the 

deductible amount and the expected proportion of total losses at a defined ceiling. The 

severity model represents the actuarial technique of achieving the expected size of claims 

which an insurance firm may likely experience in a given period and the cost of average 

claim. As reported in the work of the author in [25], we see that in the severity technique, 

past data profile is used to model the estimated average size of claims and the average 

cost per claim. A high frequency of claims may indicate that the underwriting firm 

expects a large number of claims. Insurance experts apply advanced actuarial models to 

determine the probability that insurance firm will pay out a claim and summarize 

insurance data set which will be subsequently needed and properly interpreted for 

underwriting decision process. Appraising actuarial model to compute rate differentials 

may not be immediately apparent since policy holder behavior may influence the 

frequency the number of events and the severity of the events. Thus, the magnitude by 

which loss is eliminated is the reduction in the loss incurred. 

 

  LLE z z z  .
    (104) 

The loss elimination ratio:  

   max 0, min ,
L

z Z c Z cz z
LER

z z z

 
  

  (105) 
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computes the ratio of the reduction in the expected mean loss of an underwriter writing a 

contract due to defined deductible conditions c to the expected loss of same underwriter 

writing a full coverage 

    
0

min , 1

c

c F z dz       (106) 

3.3 Data analysis 

In general insurance practice, data on deductibles is usually unavailable because they are 

claims which are only borne by individual scheme holder and moreover because of the 

confidentiality of insurance data base. Instead of the raw deductible data, we obtained 

rate relativity on deductible through a non-life insurance agent operating in property 

insurance market at Lagos. In order to present logical arguments, we solve the following 

standard empirical problem by considering an insured risk Y with unit sum insured of 

insurance cover with specified deductibles C  under an assumption of exponential 

distributions  0.1 1, ~ , 1C Z EXP     . For ease of computation, we consider the 

exponential distribution. 

 

3.4 Exponential distribution 

     
 

 
, ,

ZC C

Z Z Z

Z

g C
S C e g C e H y

S C

    

  (107) 

  0.15

0.15

0.15 0.86071,z

LZ z e dZ e



 


    

  (108)

 

 
 

0.15

exp

0

0.15 0.86071 1
L z

Z P

Z

Z
S e Z e dz

S C



        (109)
 

Now,  
0

1p ZZ g z dz



  ,  hence, we can see that 
L pZ Z that is the cost per loss 

amount is less than the cost per payment amount. The loss eliminated (LE) and loss 

elimination ratio (LER) are as given below 

   
1

1 ,
L

L L

Z Z
LE z Z Z LER z

Z


    

  (110)
 

   
1

1 0.86071 0.13929LLR z E Z


    
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TABLE 1: Relativity of Deductible and Loss Elimination Ratio for Exponentially 

Distributed Claim 

 

Deductible 

C  

Cost Per Loss 

LZ   
Loss Ratio Loss Elimination Change in LER 

    (LR) ratio(LER)   

0.1 0.904837 0.095163 0.095163 - 

0.15 0.860708 0.139292 0.139292 0.0441 

0.2 0.818731 0.181269 0.181269 0.042 

0.25 0.778801 0.221199 0.221199 0.0399 

0.3 0.740818 0.259182 0.259182 0.038 

0.35 0.704688 0.295312 0.295312 0.0361 

0.4 0.67032 0.32968 0.32968 0.0344 

0.45 0.637628 0.362372 0.362372 0.0327 

0.5 0.606531 0.393469 0.393469 0.0311 

0.55 0.57695 0.42305 0.42305 0.0296 

0.6 0.548812 0.451188 0.451188 0.0281 

0.65 0.522046 0.477954 0.477954 0.0268 

0.7 0.496585 0.503415 0.503415 0.0255 

0.75 0.472367 0.527633 0.527633 0.0242 

0.8 0.449329 0.550671 0.550671 0.023 

0.85 0.427415 0.572585 0.572585 0.0219 

0.9 0.40657 0.59343 0.59343 0.0208 

0.95 0.386741 0.613259 0.613259 0.0198 

1 0.367879 0.632121 0.632121 0.0189 

 

From the table 1 above, we observe that as the deductible increases, the loss eliminated 

also increases and consequently, the ratio of the loss eliminated seems directly 

proportional to the deductibles but from the last column and below the indicator level of 

. %4 2 , it seems high deductibles would not offer a reasonable fraction of the eliminated 

loss due to the underwriter. Consequently, column 4 represents the ratio of a reduction in 

the expected loss for an underwriting firm which writes a scheme with a deductible 

clause or with a policy limit imposed on the expected loss where the firm provides full 

insurance cover.  

 

The considerations for deductible are quite different depending on policy terms & 

conditions and on the risk preferences of the scheme holder. The underwriter may 

consider to apply the above hypothetical table of deductible relativity and use it as a 

guide to confirm if the deductible proposed by the scheme holder could offer a 

reasonable level of losses eliminated to the underwriter. However, the insurance firm 

should be cautious as high deductible is not financially ethical for the insured because 

they would bear a higher percentage of the losses arising from the insured peril. 

However, high deductibles may be imposed because of underwriting cost saving 
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conditions, loss control motivations and the burden of falling residuary insurance market.  

Irrespective of the operating deductible, the goal is to make the scheme holder risk-

conscious since he would pay the proportion of the total loss. However, provided that 

large number of losses is lower than the deductible, the administrative costs incurred by 

the underwriter to offset liabilities and maintain solvency will drop hence the premium 

payable by the policy holder will decline compared to full coverage conditions.  

 

From the computations above, we see that a policy limit at 0.150C  for instance shows 

a loss elimination ratio of 0.139292 meaning that roughly 13.92% of losses incurred will 

be eliminated by introducing a modification of 0.15. We observe further that the cost per 

loss values in column 2  are strictly less than unity which is the value of cost per payment 

in a payment event, implying that cost per loss will always be strictly less than the cost 

per payment, hence 1L pZ Z  . Theoretically, it is expected that the net present 

value of cash in-flows to the underwriting firm will exceed the underwriting income in 

the event that the investment income cash flow is assumed. This is because premium 

charged is paid to the underwriter at the time when scheme is incepted, but claims are 

assumed to be paid in the long run and it is therefore reasonable to assume that the 

underwriter would have earned return on invested premium. 

 

4. RESULTS AND DISCUSSION 

 

Using the earlier definition of 
pZ , we find that 

  
 

L

22

p

1
c dz

1
Z

Z

Z z dF
F c





 
 

   (111) 

Because density is only defined on the real line, we integrate from zero to infinity 

   
L

22

p

0

c f dzZZ z z



       (112)

 

But by the definition of deductible, we integrate from c to infinity 

  
   

m
22 *

p j j

j 1c

1
c P δ dz

1 Z

Z z z z
F c





  


   (113)

     

 

  
   

m
22 *

p j j

j 1 c

1
P c δ z dz

1 Z

Z z z
F c





  


    (114) 

  
 

 

        

m m m
2

* * 2

2 j j j j jm
j 1 j 1 j 12 *

p j j

j 1

P 2c P P c
1

P c
1 1 1 1Z Z Z Z

z z

Z z
F c F c F c F c

  



    
   

  
  (115)
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 

        

m m
2

* *

j j j j 2
j 1 j 12

p

P 2c P
c

1 1 1Z Z Z

z z

Z
F c F c F c

 
  

  

 
   (116)

       

 
 

              

2
m m m

2
* * *

j j j j j j2
j 1 j 1 j 1

p

P 2c P P
c c

Var  
1 1 1 1 1Z Z Z Z Z

z z z

Z
F c F c F c F c F c

  

 
 
     
     
 
 

  

 (117)

 

 

 
 
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j 1 j 1

P 2c P
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1 1 1

P P
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2
1 1 1 1

Z Z Z

Z Z Z Z

z z

Z
F c F c F c

z z

F c F c F c F c

 

 

   
  

  
                             

 

 

  (118)

      

 
 
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1 1
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Z Z
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 
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 
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 
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

 
 
 

    
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
 

 



(120)
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 
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(121) 
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    (121a) 
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Z Z
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zF c z c F c z
F c

Z
S c S c S c S c
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 
  

 
   

 

(122)

 

 

This variance of the random claim size under the deductible policy contract accounts for 

the fluctuations of risk indicators and defines the degree of variations of outcome 

produced from the model. The variance of cost per payment may likely fall within many 

standard deviations of its severity so that small variance will lead to prectitable 

probability outcome especially when computing the probability that an insurance firm 

will make aggregate loss or profit over all its insured schemes. Thus the magnitude by 

which loss is eliminated (LE) is the reduction in the loss incurred  

  LLE z z z 
     (123) 

Based on the definitions in equations (58), (65), (66) and (71), if S  is the sum insured; 

 1k c  , the coverage level for 0 1k  ; Z  the risk insured; then the premium of 

insurance contract under the defined deductible level chosen by the policy holder could 

be obtained based on a convex actuarial premium rating function  p k as follows. 

 

4.1 Theorem 4: Let h be the premium equation which can be written linearly as a 

function of k  

        0 0 0 0h k p k p k k k m k k        (124) 

 

where  
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 

0k k

dp k
m

dk


 is the gradient of h     (125) 

then  

   
 

 
    0 1

0 1 2 0

2 0

k k
p k p k p k p k

k k


  


   (126) 

 

Proof: From our arguments in equations (37), we can write the premium equation 

linearly as  

                0 0 0 0p k h k p k p k m k k p k p k m k k          (127) 

 

                0 0 0 0p k h k p k p k m k k p p k k k          (128)  

for 0y y  .   

If p is convex, then 0p  , therefore it implies that either both    0 0p p k   and 

 0 0k k  or both   0p m   and  0 0k k  , hence in either case 

        0p k h k p k h k        (129) 

consequently, 

          0 0 0p k h k p k p k m k k         (130) 

again, either 

   0

0

0

;
p k p k

m k k
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
 


     (131) 

or  

   0

0

0

;
p k p k

m k k
k k


 


     (132) 

and consequently, if we have 1 0 2k k k  , then 

       
   

 

 
    0 1 2 0 0 1

0 1 2 0

0 1 2 0 2 0

p k p k p k p k k k
p k p k p k p k

k k k k k k

  
    

  
 (133) 

Suppose  p k is an increasing and convex function such that   0p k   and   0p k  , 

then the total premium for the chosen coverage level k can then be  S k p k  . Under 

the distribution of underlying risk, the premium function above can be defined in the 

form 

     
 1

0

1
max 0,

S C

Zp k Sk Z dF z
Sk



      (134) 

     
 1

0

1
max 0,

S C

Zp k Sk Z f z dz
Sk



      (135) 
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where  Zf z is the probability density function of the insured risk.  

We note that 

   
 

 
1

0

1
max 0, 1

S C

Z ZSk Z f z dz f z dz
SK

 



       (136) 

   
 1

0

max 0,

S C

ZSk Z f z dz Sk



  , for every 0k     (137) 

and such that the distribution function of the coverage level is 

 

   
1

0

S C

Z ZF Sk f z dz

 

       (138) 

CONCLUSION 

 

The technique of computing mean loss subject to contract modifications was investigated 

where we obtained and compared models for computing amount paid in a loss event and 

in a payment event. Insurance contracts are modified to achieve typical payment 

functions such as deductible the effect of which is appraised in this paper. In describing a 

platform of applying generalized functions to study the behavior of risk functions, the 

dirac-delta technique has been applied to formulate insurance model regarding claim 

severities and the variance function. The dirac-delta function has then been successfully 

applied with the objective of drawing attention to some grey area applications of this 

function in general business insurance. Part of the motivation for using dirac-delta 

functions, lies in its elegance to permit alternative technique to obtain analytically useful 

models for insurance severity.  In this paper, the severity of an insurance contract under 

direct delta function with particular rate relativity deductible clause is obtained but this 

could lead to a critical issue if the rate relativity deductible is not known or missing. 

Dirac-delta function approach is technically much more convenient in terms of 

computational superiority and soundness. After appraising the dynamics governing the 

severity, we are able to build a loss model by applying the dirac-delta function.  

 

The paper presents a dirac-delta-deductible method in the analysis of severity coverages. 

Correspondence in the analysis of severity coverage usually assumes a rigorous 

dimension which could conceal the ease of the underlying idea but the dirac-delta 

function serves to exemplify much of the difficult expression which is the key tool used 

to deal with actuarial principles involved and to represent magnitude of insurance loss. In 

this paper, we have applied the dirac-delta function to obtain: (i)The expected cost per 

payment claim severity under deductible policy of general insurance using first moment 

as reported in (84) (ii)The second moment of cost per payment under deductible policy 

contract of general insurance as reported in (116) (iii)The variance of the cost per 

payment loss event under the deductible coverage modifications obtained and reported in 

equation (122). 
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