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ABSTRACT 

Ferromagnetic thin films are crucial components in various technological applications due to their 

unique magnetic properties. Understanding their behavior requires sophisticated theoretical 

models, especially for face centered cubic (fcc) structured films with three spin layers. We 

investigate such films using the fourth order perturbed Heisenberg Hamiltonian, which offers a 

more accurate description of their magnetic interactions compared to lower order models. Our 

study focused on the total magnetic energy, considering factors such as magnetic energy, spin 

dipole interaction energy, spin exchange interaction energy, second and fourth-order anisotropy, 

stress-induced anisotropy, and demagnetization factor terms. Through extensive simulations using 

MATLAB, we analyzed the total magnetic energy of these films, plotting 3D and 2D graphs of 

energy versus stress induced anisotropy and azimuthal angle of spin. Our results revealed that the 

total magnetic energy of fcc structured films with three spin layers was significantly higher 

compared to simple cubic (sc) structured films with the same number of layers. We also observed 

that the distribution of anisotropy constants among spin layers can greatly influence the total 

magnetic energy. Additionally, we found that stress induced anisotropy remains consistent at 

certain maxima, even when the values of the second order magnetic anisotropy constant in the 

middle and top spin layers are interchanged. This indicates a complex interplay between stress 

induced and intrinsic magnetic anisotropies. Our study provided valuable insights into the magnetic 

properties of fcc structured ferromagnetic thin films, highlighting the importance of considering 

higher order interactions for a comprehensive understanding of their behavior. 

 
Keywords: Fourth order perturbed Heisenberg Hamiltonian, magnetic anisotropy, spin layers, 

stress induced anisotropy. 

DOI. https://doi.org/10.4038/jsc.v16i1.74 
 

 

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, 

which permits unrestricted use, distribution and reproduction in any medium provided the original author and source are 

credited. 
 

*Corresponding author: farhanmsm@esn.ac.lk 

https://doi.org/10.4038/jsc.v16i1.74
http://creativecommons.org/licenses/by/4.0/
mailto:farhanmsm@esn.ac.lk
https://creativecommons.org/licenses/by/4.0/deed.ast


JSc EUSL (2025), vol. 16, no. 01, p 15 - 31 

1. INTRODUCTION 

 

Ferromagnetic thin films are thin layers of ferromagnetic material that exhibit a 

spontaneous magnetization, meaning they can be magnetized in the absence of an external 

magnetic field. These films are of great interest in various technological applications, 

including magnetic storage devices, magnetic sensors, and spintronic devices, due to their 

unique magnetic properties and potential for miniaturization.  

In recent years, advancements in theoretical models and computational simulations have 

significantly enhanced our understanding of the complex magnetic properties exhibited by 

ferromagnetic thin films. By delving into the intricate interplay of factors such as exchange 

interactions, anisotropy constants, and magnetoelastic effects, researchers have been able 

to predict and comprehend the observed behaviors more accurately. These insights have 

not only deepened our fundamental understanding but also guided the design of novel 

materials tailored for specific applications. 

Various models have been employed to describe ferromagnetic films, each offering unique 

perspectives. For instance, the quasistatic magnetic hysteresis of ferromagnetic thin films 

deposited on a vicinal substrate has been rigorously examined through Monte Carlo 

simulations [1]. Additionally, the magnetic properties of ferromagnetic thin films featuring 

alternating superlayers have been comprehensively studied using the Ising model [2]. 

Moreover, the structural and magnetic characteristics of two-dimensional FeCo ordered 

alloys have been precisely determined through first-principles band structure theory [3]. 

Lastly, the magnetic layers of Ni on Cu have been thoroughly investigated using the 

Korringa-Kohn-Rostoker Green's function method [4]. These diverse approaches 

underscore the multidimensional nature of research in this field, highlighting the need for 

comprehensive methodologies to unravel the intricate magnetic behaviors exhibited by 

ferromagnetic thin films. 

The magnetic properties of ferromagnetic thin films are often described using the 

Heisenberg model, which is a simplified quantum mechanical model that considers the 

interaction between magnetic moments associated with individual atoms or ions in the 

material. The Heisenberg model Hamiltonian describes the energy of the system in terms 

of the interactions between these magnetic moments. For face-centered cubic (fcc) 

structure ferromagnetic thin films, the lattice structure is characterized by a cubic unit cell 
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with atoms located at the corners and face centers of the cube. The magnetic properties of 

fcc thin films are influenced by the crystal structure, layering, and interactions between 

atoms within and between layers. 

The fourth-order perturbed Heisenberg Hamiltonian for fcc structure ferromagnetic thin 

films with three spin layers is a theoretical framework used to describe the magnetic 

interactions in these systems with greater accuracy than the basic Heisenberg model. This 

Hamiltonian includes terms that account for higher-order interactions between magnetic 

moments, beyond the nearest-neighbor interactions considered in the basic Heisenberg 

model. These higher-order interactions can play a significant role in determining the 

magnetic properties of thin films, particularly in systems with complex layering and crystal 

structures. 

In this study, we investigate the total energy of ferromagnetic thin films with three spin 

layers by solving the classical Heisenberg Hamiltonian. This approach considers various 

energy terms, including magnetic energy, spin dipole interaction energy, spin exchange 

interaction energy, second and fourth-order anisotropy, stress-induced anisotropy, and 

demagnetization factor terms. Specifically, we focus on the face-centered cubic (fcc) 

structure and employ the fourth-order perturbed Heisenberg Hamiltonian, which includes 

all seven magnetic energy parameters. 

MATLAB computer software was used to plot 3D and 2D graph of energy versus stress 

induced anisotropy and azimuthal angle of spin. 

 

2. MODEL 

The Heisenberg Hamiltonian of ferromagnetic films can be formulated as following [5-7].  

𝐻 = −
𝐽

2
∑ 𝑆𝑚. 𝑆𝑛

𝑚,𝑛

+
𝜔

2
∑ (

𝑆𝑚. 𝑆𝑛

𝑟𝑚𝑛
3 −

3(𝑆𝑚. 𝑟𝑚𝑛)(𝑟𝑚𝑛. 𝑆𝑛)

𝑟𝑚𝑛
5 ) −

𝑚≠𝑛

∑ 𝐷𝜆𝑚

(2)
(𝑆𝑚

𝑧 )2 − ∑ 𝐷𝜆𝑚

(4)(𝑆𝑚
𝑧 )4

𝑚𝑚

 

 − ∑[𝐻⃗⃗⃗ − (𝑁𝑑𝑆𝑛 𝜇0)⁄ ].

𝑚,𝑛

𝑆𝑚 − ∑ 𝐾𝑠 sin 2𝜃𝑚

𝑚

 

Here 𝑆𝑚 and 𝑆𝑛 are two spins. Above equation can be simplified into following form  
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𝐸(𝜃) = −
1

2
∑ [(𝐽𝑍|𝑚−𝑛| −

𝜔

4
Φ|𝑚−𝑛|) cos(𝜃𝑚 − 𝜃𝑛) −

3𝜔

4
Φ|𝑚−𝑛| cos(𝜃𝑚 + 𝜃𝑛)]

𝑁

𝑚,𝑛=1

 

                − ∑ (𝐷𝑚
(2)

𝑐𝑜𝑠2𝜃𝑚 + 𝐷𝑚
(4)

𝑐𝑜𝑠4𝜃𝑚 + 𝐻𝑖𝑛𝑠𝑖𝑛𝜃𝑚 + 𝐻𝑜𝑢𝑡𝑐𝑜𝑠𝜃𝑚)

𝑁

𝑚=1

 

                + ∑
𝑁𝑑

𝜇0

𝑁

𝑚,𝑛=1

𝑐𝑜𝑠(𝜃𝑚 − 𝜃𝑛) − 𝐾𝑠 ∑ 𝑠𝑖𝑛2𝜃𝑚

𝑁

𝑚=1

                                                                      (1)    

Here 𝑁, 𝑚 (𝑜𝑟 𝑛), 𝐽, 𝑍|𝑚−𝑛|, 𝜔, Φ|𝑚−𝑛|,  𝜃𝑚(𝜃𝑛), 𝐷𝑚
(2)

,  𝐷𝑚
(4)

,  𝐻𝑖𝑛, 𝐻𝑜𝑢𝑡, 𝑁𝑑 and  𝐾𝑠 

are total number of layers, layer index, spin exchange interaction, number of nearest spin 

neighbors, strength of long range dipole interaction, partial summations of dipole 

interaction, azimuthal angles of spins, second and fourth order anisotropy constants, in 

plane and out of plane applied magnetic fields, demagnetization factor and stress induced 

anisotropy constants respectively. 

The spin structure is considered to be slightly disoriented. Therefore, the spins could be 

considered to have angles distributed about an average angle θ. By choosing azimuthal 

angles as 

 𝜃𝑚 =  𝜃 + 𝜀𝑚 and  𝜃𝑛 =  𝜃 + 𝜀𝑛 

Where the 𝜀’s are small positive or negative angular deviations.  

Then, 𝜃𝑚 − 𝜃𝑛 = 𝜀𝑚 − 𝜀𝑛 and  𝜃𝑚 + 𝜃𝑛 = 2𝜃 + 𝜀𝑚 + 𝜀𝑛. After substituting these new 

angles in above equation number (1), the cosine and sine terms can be expanded up to the 

fourth order of 𝜀𝑚 and 𝜀𝑛 as following. 

𝐸(𝜃) = 𝐸0 + 𝐸(𝜀) + 𝐸(𝜀2) + 𝐸(𝜀3) + 𝐸(𝜀4)+ . . . . . . . . . ..  

If the fifth and higher order perturbations are neglected, then 

𝐸(𝜃) = 𝐸0 + 𝐸(𝜀) + 𝐸(𝜀2) + 𝐸(𝜀3) + 𝐸(𝜀4)                                                                    (2)    

Here 

𝐸0 = −
1

2
∑ (𝐽𝑍|𝑚−𝑛| −

𝜔

4
Φ|𝑚−𝑛|) +

3𝜔

8
𝑐𝑜𝑠2𝜃

𝑁

𝑚,𝑛=1

∑ Φ|𝑚−𝑛|

𝑁

𝑚,𝑛=1

− 𝑐𝑜𝑠2𝜃 ∑ 𝐷𝑚
(2)

𝑁

𝑚=1
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          −𝑐𝑜𝑠4𝜃 ∑ 𝐷𝑚
(4)

𝑁

𝑚=1

− 𝑁(𝐻𝑖𝑛𝑠𝑖𝑛𝜃 + 𝐻𝑜𝑢𝑡𝑐𝑜𝑠𝜃 + 𝐾𝑠𝑠𝑖𝑛2𝜃) +
𝑁𝑑𝑁2

𝜇0
                                       (3) 

𝐸(𝜀) = −
3𝜔

8
𝑠𝑖𝑛2𝜃 ∑ Φ|𝑚−𝑛|

𝑁

𝑚,𝑛=1

(𝜀𝑚 + 𝜀𝑛) + 𝑠𝑖𝑛2𝜃 ∑ 𝐷𝑚
(2)

𝜀𝑚

𝑁

𝑚=1

+ 2𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 ∑ 𝐷𝑚
(4)

𝜀𝑚

𝑁

𝑚=1

 

               −𝐻𝑖𝑛𝑐𝑜𝑠𝜃 ∑ 𝜀𝑚

𝑁

𝑚=1

+ 𝐻𝑜𝑢𝑡𝑠𝑖𝑛𝜃 ∑ 𝜀𝑚

𝑁

𝑚=1

− 2𝐾𝑠𝑐𝑜𝑠2𝜃 ∑ 𝜀𝑚

𝑁

𝑚=1

                                              (4) 

𝐸(𝜀2) =
1

4
∑ (𝐽𝑍|𝑚−𝑛| −

𝜔

4
Φ|𝑚−𝑛|) (𝜀𝑚 − 𝜀𝑛)2

𝑁

𝑚,𝑛=1

−
3𝜔

16
𝑐𝑜𝑠2𝜃 ∑ Φ|𝑚−𝑛|

𝑁

𝑚,𝑛=1

(𝜀𝑚 + 𝜀𝑛)2 

              +𝑐𝑜𝑠2𝜃 ∑ 𝐷𝑚
(2)

𝜀𝑚
2

𝑁

𝑚=1

+ 2𝑐𝑜𝑠2𝜃(𝑐𝑜𝑠2𝜃 − 3𝑠𝑖𝑛2𝜃) ∑ 𝐷𝑚
(4)

𝜀𝑚
2

𝑁

𝑚=1

+
𝐻𝑖𝑛

2
𝑠𝑖𝑛𝜃 ∑ 𝜀𝑚

2

𝑁

𝑚=1

 

              +
𝐻𝑜𝑢𝑡

2
𝑐𝑜𝑠𝜃 ∑ 𝜀𝑚

2

𝑁

𝑚=1

−
𝑁𝑑

2𝜇0
∑ (𝜀𝑚 − 𝜀𝑛)2

𝑁

𝑚,𝑛=1

+ 2𝐾𝑠𝑠𝑖𝑛2𝜃 ∑ 𝜀𝑚
2

𝑁

𝑚=1

                                    (5) 

𝐸(𝜀3) =
𝜔

16
𝑠𝑖𝑛2𝜃 ∑ Φ|𝑚−𝑛|

𝑁

𝑚,𝑛=1

(𝜀𝑚 + 𝜀𝑛)3 −
4

3
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 ∑ 𝐷𝑚

(2)
𝜀𝑚

3

𝑁

𝑚=1

 

              −4𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (
5

3
𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) ∑ 𝐷𝑚

(4)
𝜀𝑚

3

𝑁

𝑚=1

+
𝐻𝑖𝑛

6
𝑐𝑜𝑠𝜃 ∑ 𝜀𝑚

3

𝑁

𝑚=1

−
𝐻𝑜𝑢𝑡

6
𝑠𝑖𝑛𝜃 ∑ 𝜀𝑚

3

𝑁

𝑚=1

 

              +
4

3
𝐾𝑠𝑐𝑜𝑠2𝜃 ∑ 𝜀𝑚

3

𝑁

𝑚=1

                                                                                                                       (6) 

𝐸(𝜀4) = −
1

48
∑ (𝐽𝑍|𝑚−𝑛| −

𝜔

4
Φ|𝑚−𝑛|) (𝜀𝑚 − 𝜀𝑛)4

𝑁

𝑚,𝑛=1

+
𝜔

64
𝑐𝑜𝑠2𝜃 ∑ Φ|𝑚−𝑛|

𝑁

𝑚,𝑛=1

(𝜀𝑚 + 𝜀𝑛)4 

                 −
1

3
𝑐𝑜𝑠2𝜃 ∑ 𝐷𝑚

(2)
𝜀𝑚

4

𝑁

𝑚=1

− (
5

3
𝑐𝑜𝑠4𝜃 − 8𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 + 𝑠𝑖𝑛4𝜃) ∑ 𝐷𝑚

(4)
𝜀𝑚

4

𝑁

𝑚=1

 

 −
𝐻𝑖𝑛

24
𝑠𝑖𝑛𝜃 ∑ 𝜀𝑚

4

𝑁

𝑚=1

−
𝐻𝑜𝑢𝑡

24
𝑐𝑜𝑠𝜃 ∑ 𝜀𝑚

4

𝑁

𝑚=1

+
𝑁𝑑

24𝜇0
∑ (𝜀𝑚 − 𝜀𝑛)4

𝑁

𝑚,𝑛=1

 

               −
2

3
𝐾𝑠𝑠𝑖𝑛2𝜃 ∑ 𝜀𝑚

4

𝑁

𝑚=1

                                                                                                                       (7) 
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For films with three spin layers, N = 3. Therefore, m and n change from 1 to 3. 

𝐸0 = −
3

2
(𝐽𝑍0 −

𝜔

4
Φ0) − 2 (𝐽𝑍1 −

𝜔

4
Φ1) +

3𝜔

8
𝑐𝑜𝑠2𝜃(3Φ0 + 4Φ1) − 𝑐𝑜𝑠2𝜃(𝐷1

(2)
+ 𝐷2

(2)
 

+𝐷3
(2)

) − 𝑐𝑜𝑠4𝜃 (𝐷1
(4)

+ 𝐷2
(4)

+ 𝐷3
(4)

) − 3(𝐻𝑖𝑛𝑠𝑖𝑛𝜃 + 𝐻𝑜𝑢𝑡𝑐𝑜𝑠𝜃 + 𝐾𝑠𝑠𝑖𝑛2𝜃) + 9
𝑁𝑑

𝜇0
     (8) 

𝐸(𝜀) = −
3𝜔

4
𝑠𝑖𝑛2𝜃[Φ0(𝜀1 + 𝜀2 + 𝜀3) + Φ1(𝜀1 + 2𝜀2 + 𝜀3)] + 𝑠𝑖𝑛2𝜃(𝐷1

(2)
𝜀1 + 𝐷2

(2)
𝜀2 

              +𝐷3
(2)

𝜀3) + 2𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 (𝐷1
(4)

𝜀1 + 𝐷2
(4)

𝜀2 + 𝐷3
(4)

𝜀3) − 𝐻𝑖𝑛𝑐𝑜𝑠𝜃(𝜀1 + 𝜀2 + 𝜀3) 

             +𝐻𝑜𝑢𝑡𝑠𝑖𝑛𝜃(𝜀1 + 𝜀2 + 𝜀3) − 2𝐾𝑠𝑐𝑜𝑠2𝜃(𝜀1 + 𝜀2 + 𝜀3)                                                           (9) 

𝐸(𝜀2) =
1

2
(𝐽𝑍1 −

𝜔

4
Φ1) (𝜀1

2 + 2𝜀2
2 + 𝜀3

2 − 2𝜀1𝜀2 − 2𝜀2𝜀3) −
3𝜔

8
𝑐𝑜𝑠2𝜃[2Φ0(𝜀1

2 + 𝜀2
2 

               +𝜀3
2) + Φ1(𝜀1

2 + 2𝜀2
2 + 𝜀3

2 + 2𝜀1𝜀2 + 2𝜀2𝜀3)] + 𝑐𝑜𝑠2𝜃(𝐷1
(2)

𝜀1
2 + 𝐷2

(2)
𝜀2

2 

+𝐷3
(2)

𝜀3
2) + 2𝑐𝑜𝑠2𝜃(𝑐𝑜𝑠2𝜃 − 3𝑠𝑖𝑛2𝜃) (𝐷1

(4)
𝜀1

2 + 𝐷2
(4)

𝜀2
2 + 𝐷3

(4)
𝜀3

2) 

+
𝐻𝑖𝑛

2
𝑠𝑖𝑛𝜃(𝜀1

2 + 𝜀2
2 + 𝜀3

2) +
𝐻𝑜𝑢𝑡

2
𝑐𝑜𝑠𝜃(𝜀1

2 + 𝜀2
2 + 𝜀3

2) − 2
𝑁𝑑

𝜇0
(𝜀1

2 + 𝜀2
2 

            +𝜀3
2 − 𝜀1𝜀2 − 𝜀1𝜀3 − 𝜀2𝜀3) + 2𝐾𝑠𝑠𝑖𝑛2𝜃(𝜀1

2 + 𝜀2
2 + 𝜀3

2)                                              (10) 

𝐸(𝜀3) =
𝜔

8
𝑠𝑖𝑛2𝜃[4Φ0(𝜀1

3 + 𝜀2
3 + 𝜀3

3) + Φ1(𝜀1
3 + 3𝜀1

2𝜀2 + 3𝜀1𝜀2
2 + 2𝜀2

3 + 3𝜀2
2𝜀3 

              +3𝜀2𝜀3
2 + 𝜀3

3)] −
4

3
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (𝐷1

(2)
𝜀1

3 + 𝐷2
(2)

𝜀2
3 + 𝐷3

(2)
𝜀3

3) − 4𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

              (
5

3
𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) (𝐷1

(4)
𝜀1

3 + 𝐷2
(4)

𝜀2
3 + 𝐷3

(4)
𝜀3

3) +
𝐻𝑖𝑛

6
𝑐𝑜𝑠𝜃(𝜀1

3 + 𝜀2
3 + 𝜀3

3) 

             −
𝐻𝑜𝑢𝑡

6
𝑠𝑖𝑛𝜃(𝜀1

3 + 𝜀2
3 + 𝜀3

3) +
4

3
𝐾𝑠𝑐𝑜𝑠2𝜃(𝜀1

3 + 𝜀2
3 + 𝜀3

3)                                          (11) 

𝐸(𝜀4) = −
1

24
(𝐽𝑍1 −

𝜔

4
Φ1) (𝜀1

4 − 4𝜀1
3𝜀2 + 6𝜀1

2𝜀2
2 − 4𝜀1𝜀2

3 + 2𝜀2
4 − 4𝜀2

3𝜀3 + 6𝜀2
2𝜀3

2 

                 −4𝜀2𝜀3
3 + 𝜀3

4) +
𝜔

32
𝑐𝑜𝑠2𝜃[8Φ0(𝜀1

4 + 𝜀2
4 + 𝜀3

4) + Φ1(𝜀1
4 + 4𝜀1

3𝜀2 + 6𝜀1
2𝜀2

2 

               +4𝜀1𝜀2
3 + 2𝜀2

4 + 4𝜀2
3𝜀3 + 6𝜀2

2𝜀3
2 + 4𝜀2𝜀3

3 + 𝜀3
4)] −

1

3
𝑐𝑜𝑠2𝜃(𝐷1

(2)
𝜀1

4 + 𝐷2
(2)

𝜀2
4 
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               +𝐷3
(2)

𝜀3
4) − (

5

3
𝑐𝑜𝑠4𝜃 − 8𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 + 𝑠𝑖𝑛4𝜃) (𝐷1

(4)
𝜀1

4 + 𝐷2
(4)

𝜀2
4 + 𝐷3

(4)
𝜀3

4) 

               −
𝐻𝑖𝑛

24
𝑠𝑖𝑛𝜃(𝜀1

4 + 𝜀2
4 + 𝜀3

4) −
𝐻𝑜𝑢𝑡

24
𝑐𝑜𝑠𝜃(𝜀1

4 + 𝜀2
4 + 𝜀3

4) +
𝑁𝑑

6𝜇0
(𝜀1

4 − 2𝜀1
3𝜀2 

             +3𝜀1
2𝜀2

2 − 2𝜀1𝜀2
3 + 𝜀2

4 − 2𝜀1
3𝜀3 + 3𝜀1

2𝜀3
2 − 2𝜀1𝜀3

3 + 𝜀3
4 − 2𝜀2

3𝜀3 + 3𝜀2
2𝜀3

2 

               −2𝜀2𝜀3
3) −

2

3
𝐾𝑠𝑠𝑖𝑛2𝜃(𝜀1

4 + 𝜀2
4 + 𝜀3

4)                                                                                      (12) 

First order perturbation term can be expressed in terms of a row and column matrix with 

all seven terms in each as following. 

𝐸(𝜀) = 𝛼⃗. 𝜀 

Here terms of 𝛼 are given by 𝛼1, 𝛼2 and 𝛼3. 

𝛼1 = −
3𝜔

4
𝑠𝑖𝑛2𝜃(Φ0 + Φ1) + 𝑠𝑖𝑛2𝜃𝐷1

(2)
+ 2𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃𝐷1

(4)
− 𝐻𝑖𝑛𝑐𝑜𝑠𝜃 + 𝐻𝑜𝑢𝑡𝑠𝑖𝑛𝜃    

      −2𝐾𝑠𝑐𝑜𝑠2𝜃                                                                                                                            (13) 

𝛼2 = −
3𝜔

4
𝑠𝑖𝑛2𝜃(Φ0 + Φ1) + 𝑠𝑖𝑛2𝜃𝐷2

(2)
+ 2𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃𝐷2

(4)
− 𝐻𝑖𝑛𝑐𝑜𝑠𝜃 + 𝐻𝑜𝑢𝑡𝑠𝑖𝑛𝜃    

         −2𝐾𝑠𝑐𝑜𝑠2𝜃                                                                                                                            (14) 

𝛼3 = −
3𝜔

4
𝑠𝑖𝑛2𝜃(Φ0 + Φ1) + 𝑠𝑖𝑛2𝜃𝐷3

(2)
+ 2𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃𝐷3

(4)
− 𝐻𝑖𝑛𝑐𝑜𝑠𝜃 + 𝐻𝑜𝑢𝑡𝑠𝑖𝑛𝜃 

           −2𝐾𝑠𝑐𝑜𝑠2𝜃                                                                                                                                          (15) 

Second order perturbation term can be expressed in terms of a two-by-two matrix. A row 

matrix and a column matrix as following. 

𝐸(𝜀2) =
1

2
𝜀. 𝐶. 𝜀 

Elements of 3 × 3 matrix (C) are delineated by 

𝐶11 = 𝐽𝑍1 −
𝜔

4
Φ1 −

3𝜔

4
𝑐𝑜𝑠2𝜃(2Φ0 + Φ1) + 2𝑐𝑜𝑠2𝜃𝐷1

(2)
+ 4𝑐𝑜𝑠2𝜃(𝑐𝑜𝑠2𝜃 − 3𝑠𝑖𝑛2𝜃)𝐷1

(4)
 

           +𝐻𝑖𝑛𝑠𝑖𝑛𝜃 + 𝐻𝑜𝑢𝑡𝑐𝑜𝑠𝜃 −
4𝑁𝑑

𝜇0
+ 4𝐾𝑠𝑠𝑖𝑛2𝜃                                                                             (16) 

𝐶12 = 𝐶21 = 𝐶23 = 𝐶32 = −𝐽𝑍1 +
𝜔

4
Φ1 −

3𝜔

4
𝑐𝑜𝑠2𝜃Φ1 +

2𝑁𝑑

𝜇0
                                                   (17) 
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𝐶13 = 𝐶31 =
2𝑁𝑑

𝜇0
                                                                                                                                              (18) 

𝐶22 = 2(𝐽𝑍1 −
𝜔

4
Φ1) −

3𝜔

2
𝑐𝑜𝑠2𝜃(Φ0 + Φ1) + 2𝑐𝑜𝑠2𝜃𝐷2

(2)
+ 4𝑐𝑜𝑠2𝜃(𝑐𝑜𝑠2𝜃 − 3𝑠𝑖𝑛2𝜃)𝐷2

(4)
 

          +𝐻𝑖𝑛𝑠𝑖𝑛𝜃 + 𝐻𝑜𝑢𝑡𝑐𝑜𝑠𝜃 −
4𝑁𝑑

𝜇0
+ 4𝐾𝑠𝑠𝑖𝑛2𝜃                                                                                     (19) 

𝐶33 = 𝐽𝑍1 −
𝜔

4
Φ1 −

3𝜔

4
𝑐𝑜𝑠2𝜃(2Φ0 + Φ1) + 2𝑐𝑜𝑠2𝜃𝐷3

(2)
+ 4𝑐𝑜𝑠2𝜃(𝑐𝑜𝑠2𝜃 − 3𝑠𝑖𝑛2𝜃)𝐷3

(4)
 

          +𝐻𝑖𝑛𝑠𝑖𝑛𝜃 + 𝐻𝑜𝑢𝑡𝑐𝑜𝑠𝜃 −
4𝑁𝑑

𝜇0
+ 4𝐾𝑠𝑠𝑖𝑛2𝜃                                                                                     (20) 

Third order perturbation term can be expressed in terms of a two-by-two matrix. A row 

matrix and a column matrix as following. 

𝐸(𝜀3) = 𝜀2. 𝛽. 𝜀 

Elements of 3 × 3 matrix (𝛽) are specified by 

𝛽11 =
𝜔

8
𝑠𝑖𝑛2𝜃(4Φ0 + Φ1) −

4

3
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝐷1

(2)
− 4𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (

5

3
𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) 𝐷1

(4)
                   

          +
𝐻𝑖𝑛

6
𝑐𝑜𝑠𝜃 −

𝐻𝑜𝑢𝑡

6
𝑠𝑖𝑛𝜃 +

4

3
𝐾𝑠𝑐𝑜𝑠2𝜃                                                                                         (21) 

𝛽12 = 𝛽21 = 𝛽23 = 𝛽32 =
3𝜔

8
𝑠𝑖𝑛2𝜃Φ1                                                                                                (22) 

𝛽13 = 𝛽31 = 0                                                                                                                                              (23) 

𝛽22 =
𝜔

4
𝑠𝑖𝑛2𝜃(2Φ0 + Φ1) −

4

3
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝐷2

(2)
− 4𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (

5

3
𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) 𝐷2

(4)
 

          +
𝐻𝑖𝑛

6
𝑐𝑜𝑠𝜃 −

𝐻𝑜𝑢𝑡

6
𝑠𝑖𝑛𝜃 +

4

3
𝐾𝑠𝑐𝑜𝑠2𝜃                                                                                         (24) 

𝛽33 =
𝜔

8
𝑠𝑖𝑛2𝜃(4Φ0 + Φ1) −

4

3
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝐷3

(2)
− 4𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (

5

3
𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) 𝐷3

(4)
 

          +
𝐻𝑖𝑛

6
𝑐𝑜𝑠𝜃 −

𝐻𝑜𝑢𝑡

6
𝑠𝑖𝑛𝜃 +

4

3
𝐾𝑠𝑐𝑜𝑠2𝜃                                                                                         (25) 

Fourth order perturbation term can be expressed in terms of a two-by-two matrix. A row 

matrix and a column matrix as following. 
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𝐸(𝜀4) = 𝜀3. 𝐹. 𝜀 +  𝜀2. 𝐺. 𝜀2 

Elements of 3 × 3 matrix (F and G) are delineated by 

𝐹11 = −
1

24
(𝐽𝑍1 −

𝜔

4
Φ1) +

𝜔

32
𝑐𝑜𝑠2𝜃(8Φ0 + Φ1) −

1

3
𝑐𝑜𝑠2𝜃𝐷1

(2)
 

− (
5

3
𝑐𝑜𝑠4𝜃 − 8𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 + 𝑠𝑖𝑛4𝜃) 𝐷1

(4)
−

𝐻𝑖𝑛

24
𝑠𝑖𝑛𝜃 −

𝐻𝑜𝑢𝑡

24
𝑐𝑜𝑠𝜃 +

𝑁𝑑

6𝜇0
−

2

3
𝐾𝑠𝑠𝑖𝑛2𝜃  

                                                                                                                                        (26) 

𝐹12 = 𝐹21 = 𝐹23 = 𝐹32 =
1

6
(𝐽𝑍1 −

𝜔

4
Φ1) +

𝜔

8
𝑐𝑜𝑠2𝜃Φ1 −

𝑁𝑑

3𝜇0
                                                  (27) 

𝐹13 = 𝐹31 = −
𝑁𝑑

3𝜇0
                                                                                                                                    (28) 

𝐹22 = −
1

12
(𝐽𝑍1 −

𝜔

4
Φ1) +

𝜔

16
𝑐𝑜𝑠2𝜃(4Φ0 + Φ1) −

1

3
𝑐𝑜𝑠2𝜃𝐷2

(2)
 

          − (
5

3
𝑐𝑜𝑠4𝜃 − 8𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 + 𝑠𝑖𝑛4𝜃) 𝐷2

(4)
−

𝐻𝑖𝑛

24
𝑠𝑖𝑛𝜃 −

𝐻𝑜𝑢𝑡

24
𝑐𝑜𝑠𝜃 +

𝑁𝑑

6𝜇0
−

2

3
𝐾𝑠𝑠𝑖𝑛2𝜃  

                                                                                                                                                                    (29) 

𝐹33 = −
1

24
(𝐽𝑍1 −

𝜔

4
Φ1) +

𝜔

32
𝑐𝑜𝑠2𝜃(8Φ0 + Φ1) −

1

3
𝑐𝑜𝑠2𝜃𝐷3

(2)
 

            − (
5

3
𝑐𝑜𝑠4𝜃 − 8𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 + 𝑠𝑖𝑛4𝜃) 𝐷3

(4)
−

𝐻𝑖𝑛

24
𝑠𝑖𝑛𝜃 −

𝐻𝑜𝑢𝑡

24
𝑐𝑜𝑠𝜃 +

𝑁𝑑

6𝜇0
−

2

3
𝐾𝑠𝑠𝑖𝑛2𝜃  

                                                                                                                                                        (30) 

𝐺11 = 𝐺22 = 𝐺33 = 0                                                                                                                                 (31) 

𝐺12 = 𝐺21 = −
1

8
(𝐽𝑍1 −

𝜔

4
Φ1) +

3𝜔

32
𝑐𝑜𝑠2𝜃Φ1 +

𝑁𝑑

4𝜇0
                                                                    (32) 

𝐺23 = 𝐺32 = −
1

8
(𝐽𝑍1 −

𝜔

4
Φ1) +

3𝜔

32
𝑐𝑜𝑠2𝜃Φ1 +

𝑁𝑑

2𝜇0
                                                                    (33) 

𝐺13 = 𝐺31 =
𝑁𝑑

4𝜇0
                                                                                                                                         (34) 

Therefore, the total magnetic energy given in equation (2) can be deduced to 

𝐸(𝜃) = 𝐸0 + 𝛼⃗. 𝜀 +
1

2
𝜀. 𝐶. 𝜀 + 𝜀2. 𝛽. 𝜀 + 𝜀3. 𝐹. 𝜀 +  𝜀2. 𝐺. 𝜀2                                                         (35) 
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For the minimum energy of the second order perturbed term 

𝜀 = −𝐶+. 𝛼                                                                                                                                                (36) 

Here 𝐶+ is the pseudo inverse of matrix C. 𝐶+ can be found using 

𝐶. 𝐶+ = 1 −
𝐸

𝑁
                                                                                                                                            (37) 

Here 𝐸 is the matrix with all elements given 𝑏𝑦 𝐸𝑚𝑛 = 1. I is the identity matrix.  

Therefore, from the matrix equation (36) 

𝜀1 = −(𝐶11
+ 𝛼1 + 𝐶12

+ 𝛼2 + 𝐶13
+ 𝛼3)                                                                                                           (38)                     

𝜀2 = −(𝐶21
+ 𝛼1 + 𝐶22

+ 𝛼2 + 𝐶23
+ 𝛼3)                                                                                                           (39) 

𝜀3 = −(𝐶31
+ 𝛼1 + 𝐶32

+ 𝛼2 + 𝐶33
+ 𝛼3)                                                                                                           (40) 

After substituting  in equation (35), the total magnetic energy can be determined.  

 

3. RESULTS AND DISCUSSION 

All the graphs in this manuscript were plotted for ferromagnetic films with face centered 

cubic lattice and three spin layers. For ferromagnetic films with fcc (001) structure, Z0=4, 

Z1=4, Z2=0, 𝛷0 = 9.0336 and 𝛷1 = 1.4294 [8-10]. 3D plot of energy versus angle and 

stress induced anisotropy constant is given in figure 1 for 
𝐷1

(2)

𝜔
= 10,  

𝐷2
(2)

𝜔
= 5 and  

𝐷3
(2)

𝜔
= 10. 

Here other parameters are fixed at  
𝐽

𝜔
=

𝐷1
(4)

𝜔
=

𝐷2
(4)

𝜔
=

𝐷3
(4)

𝜔
=

𝐻𝑖𝑛

𝜔
=

𝑁𝑑

𝜇0𝜔
=

𝐻𝑜𝑢𝑡

𝜔
= 10 for this 

simulation. The energy maximums can be observed at 
𝐾𝑠

𝜔
= 4, 27, 50, 75, 94. The major 

maximum observed at about 
𝐾𝑠

𝜔
= 75. Energy in these graphs is in the order of 106. The peaks 

along the axis of angle are closely packed in the fourth order perturbed case compared to the 

second and third order perturbed cases [7, 11, 12]. The shape of the graph is also entirely 

different from the graphs obtained using the second and third order perturbed Heisenberg 

Hamiltonian [7, 11, 12]. The peaks are periodically distributed. The total magnetic energy 

decreases when compared to sc structured ferromagnetic thin films with the same number of 

spin layers [13]. But it was found (1049) significantly higher in the two spin layer for the 

same structure [14]. 
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Figure 2 shows the graph of energy versus angle for 
𝐾𝑠

𝜔
= 75 after fixing the other parameters 

at the values given above. In this graph, energy minimum can be observed at 0.754 and 3.896 

radians. The energy maximums can be found at 2.356 and 5.435 radians. The angle between 

consecutive magnetic easy and hard directions is approximately 90 degrees. 

 

 

 

 

 

 

 

 

 

Figure 1: 3D plot of energy versus angle and stress induced anisotropy for 
𝐷1

(2)

𝜔
= 10,

𝐷2
(2)

𝜔
= 5 and  

𝐷3
(2)

𝜔
= 10. 

 

 

 

 

 

 

 

 

 

Figure 2: 2D graph of energy versus angle for 
𝐾𝑠

𝜔
= 75. 
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Figure 3 represents the 3D plot of energy versus angle and stress induced anisotropy 

constant for 
𝐷1

(2)

𝜔
= 10,  

𝐷2
(2)

𝜔
= 10 and  

𝐷3
(2)

𝜔
= 5. Here other parameters are fixed at 

𝐽

𝜔
=

𝐷1
(4)

𝜔
=

𝐷2
(4)

𝜔
=

𝐷3
(4)

𝜔
=

𝐻𝑖𝑛

𝜔
=

𝑁𝑑

𝜇0𝜔
=

𝐻𝑜𝑢𝑡

𝜔
= 10 for this simulation. In this graph, the energy 

maximums can be observed at 
𝐾𝑠

𝜔
= 2, 23, 48, 71 and 94. The major maximum was 

observed at about 
𝐾𝑠

𝜔
= 71. Energy in these graphs is in the order of 1022. According to 

figures 1 and 3, when the second order anisotropy constant in the top spin layer is less than 

those of the bottom and middle spin layers, the total magnetic energy increases. The values 

of stress induced anisotropy at the maxima of 3D plots are approximately the same, when 

the values of the second order magnetic anisotropy constant of the middle and top spin 

layers are interchanged. The minimum value of the energy is zero in both 3D plots. In these 

graphs, the total magnetic was observed in the range of 106 to 1022. However, in the case 

of sc structures, the total magnetic energy was obtained in the range of 1012 to 1017 [13]. 

The change in energy is significantly higher in the graph plotting energy versus angle and 

stress induced anisotropy constant for fcc structure with three spin layers when compared 

to sc structured ferromagnetic thin films with the same number of spin layers [13]. 

Figure 4 shows the graph of energy versus angle for 
𝐾𝑠

𝜔
= 71 after fixing the other 

parameters at the values given above. In this graph, magnetic easy directions can be 

observed at 0.754 and 3.896 radians. The energy maximums can be found at 2.356 and 

5.404 radians. The angle between consecutive magnetic easy and hard directions is 

approximately 90 degrees. The maximum and minimum energy values in this graph are 

approximately the same when compared to figure 2. However, a spike did not appear in 

the graph plotted in figure 2, while it is evident in the current graph. 
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Figure 3: 3D plot of energy versus angle and stress induced anisotropy for 
𝐷1

(2)

𝜔
= 10,

𝐷2
(2)

𝜔
= 10 

and  
𝐷3

(2)

𝜔
= 5. 

 

 

 

 

 

 

 

 

        

 

 

Figure 4: 2D graph of energy versus angle for 
𝐾𝑠

𝜔
= 71. 
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4. CONCLUSION 

All the graphs showing the total magnetic energy versus angle and the stress-induced 

anisotropy constant were plotted using the fourth-order perturbed Heisenberg Hamiltonian 

equation with all seven magnetic energy parameters for face centered cubic structured 

ferromagnetic thin films with three spin layers. The total magnetic energy of fcc structured 

ferromagnetic thin films with three spin layers was observed to be in the order of 106 to 

1022. This range is significantly higher compared to simple cubic structured ferromagnetic 

thin films with the same number of spin layers, where the total magnetic energy was 

obtained in the range of 1012 to 1017. This indicates that the fcc structure exhibits higher 

energy values, suggesting potential differences in stability or magnetic behavior. When the 

second order anisotropy constant in the top spin layer is less than those of the bottom and 

middle spin layers, the total magnetic energy increases. This suggests that the distribution 

of anisotropy constants among the spin layers can have a significant impact on the overall 

magnetic properties of the thin film. The values of stress induced anisotropy at the maxima 

of the 3D plots are approximately the same when the values of the second order magnetic 

anisotropy constant of the middle and top spin layers are interchanged. The graphs of 

energy versus angle show that the magnetic easy directions are located at approximately 

0.754 and 3.896 radians, with energy maximums at 2.356 and 5.404 radians. This suggests 

that the magnetic moments preferentially align along specific directions, which is 

important for understanding the magnetic behavior and stability of the thin film. The peaks 

along the axis of angle are closely packed in the fourth-order perturbed case compared to 

the second and third-order perturbed cases, indicating a more complex energy landscape 

with higher-order interactions. Additionally, the shape of the energy-angle graph is entirely 

different from the graphs obtained using lower order perturbed Heisenberg Hamiltonians, 

highlighting the importance of considering higher order interactions for an accurate 

description of the magnetic properties. 
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