JSc - EUSL (2016) Vol.7, P19 -34
ISSN 1391 - 586X : © 2016 by Faculty of Science, Eastern University, Sri Lanka

Teaching Formal Methods using Scaffolding:
A Semi-automated Translation Process from
UML Classes to Schemas

S. Mohanarajah* and T. Sritharan **

*Department of Mathematics and Computer Science, Claflin University, Orangeburg, USA.
**University of Colombo School of Computing, University of Colombo, Colombo, Sri
Lanka.

Abstract

Formal Methods in Software Engineering is an inherently complex and challenging discipline
(0 learn. This research attempts to design an instructional strategy to simplify the process of
learning an Object Oriented Formal Language known as Object-Z using a Computer Based
Learning system. A constructionist instructional technique is used to promote active learning
by encouraging students to construct more complex artefacts such as formal models based
on less complex ones such as semi-formal models. A step-by-step methodology is implemented
to transform simple UML class diagrams to Object-Z schemas. This methodology could be
extended to implement a semi-automated translation system for UML to Object Models.
Scaffolding is used at the initial learning stages to alleviate the difficulty associated with
complex transformation processes. The proposed instructional strategy brings various
techniques together to enhance the learning experience. A functional prototype is implemented
to teach the fundamental concepts of Object-Z. Both objective and subjective evaluations
using the prototype indicate that the proposed CBL system has a statistically significant
impact on learning Object-Z.

Keywords: Formal Methods, Object-Z, Computer Based Learning Systems

I. Formal methods

Formal specification is an important vehicle to attain reliability in the system developmeiit
process. This is often taught in the third year at Universities [1]. However, based on the
undecidability result, it is impossible to build a general formal tool that could verify whether
an algorithm is a solution to a problem. The recent report ‘Formal Methods for Safe and
Secure Computer Systems’ [16] suggests three ways to work around the ‘undecidability’
obstacle: restrict to systems for which verification is decidable, limit to some weaker but

sufficient specifications and finally use semi-automated verification systems that require human
intervention.

19

JSc - EUSL (2016) Vol.7, P 19 -34

Despite its importance in industry and commerce, formal specification has not been well
received by software engineering students. Martin Fowler, a leading object technology
consultant, states, “Formal methods are hard to understand and manipulate, often harder to
deal with than programming languages™ ([15], p- 12). The following are some of the reasons
stated in the literature relating to students’ difficulties in learning formal methods:

« Insufficient mathematical ability

» Complex notation and structure

« Lack of motivation (at the beginning) [31]
« Inability to abstract details [1 0].

In this research, we investigates whether a Computer Based Learning (CBL) with scaffolding
using a semi-automated step-by-step transformation process from UML diagrams to Schemas
would help students to learn formal methods. Initially, we selected Object-Z for our study
because it is an object oriented formal language and it is more related to UML than any other
formal languages. We implemented a prototype and conducted an evaluation.

2. OBJECT-Z: AN OVERVIEW
Object-Z is an OO formal notation based on Z ([9], [10]) 7 is a state-based formal
notation [4]. The class schema in Object-Z is a named entity, which encapsulates the
state schema and a collection of operation schemas. Figure 1 outlines the structure of the
class schema
__Key
[(open)

keyID: N‘

mom : Room

_roomOK
room?: Room

room = room?

_roomNOTok
room? : Room

room = room?

open = (roomOK A room.open) V roomNQOTok

Figure 1: Class Schema in Object-Z

20

S. Mohanarajah and T. Sritharan

Schemas in Object-Z, similar to Z, have two parts: the declaration part and the predicate part.
The declaration part primarily lists the relevant identifiers with types, and the predicate part
contains constraints pertinent to the schema, in first-order predicate logic. If there are no such
constraints, the predicate part may be omitted.

Object orientation views a software system as a collection of interacting objects; therefore,
the specification of a system will contain a collection of class schemas. Each class can
be easily understood in isolation. There are some composition operations (e.g. the parallel
operator) available in Object-Z to cater for message passing between objects. Special
constructs are available to specify inheritance and polymorphism. The notion of Object
containment is used to specify object compositions. The class union feature in Object-Z,
which is not available in UML, facilitates rich class associations. Some of the important
constructs are explained in the following paragraphs using a case study (see Figure 2).
For more information, refer to [9], [10]

Case Study
A building has many rooms. Each room has at least one key (a magnetized card). A key
can open only one room. At any time, a room may be in a locked or unlocked state.

Opening a given room is considered the main requirement of this system.

USECASE open room

O) Pre condition: room is locked
T ----------------------- >© (1) Client swipes the card
P (2) Room opens.

Client open room Alternatively,

Card is not valid

Room
&roomNO : Byte Key
&locked : Boolean <open |&keylD : Long
&rroom : Room
QisLocked() : Boolean| 0.1 1.n
Ylock() open() : Boolean
Q®open()

Figure 2: Case Study

21

JSc - EUSL (2016) Vol.7, P 19 - 34

3. UML: AN OVERVIEW

UML is just a collection of complex graphical notations, albeit a powerful one, used in the
00 software development process [6]. It includes a number of different diagrams for use in
different phases of the software development process. It can also be used to model hardware
functions, business processes, etc. UML is an outcome of combining a collection of best
practices within the software development process [15] and is a de-facto standard for OO
software development notation. The main artefacts are defined by UML notations themselves.
It can be extended through the use of stereotypes. The use case diagram, class diagram and
interaction-sequence diagram are all important diagrams in the UML notation [6], [5], and

[5].

4. COMPUTER BASED LEARNING SYSTEMS (CBL SYSTEMS)

With recent advances in information and communication technologies, the educational needs
of society demand radical changes in learning practices. The traditional notion of primary-
secondary-tertiary education followed by professional work has become inadequate. The
current knowledge-driven, competitive, marketing economy requires that knowledge and
training be available on-demand, offered ina flexible mode and be life-long. Computer Based

Learning (CBL) systems are expected to play a major role in catering for these changes [7].

The research related to CBL systems has more than a four decade long history. Figure 3
gives a general frame work for a CBL system. There have been thousands of systems
reported in the literature related to a variety of disciplines. Learning theories play important
roles in determining their fundamental architectures. Current CBL systems often
incorporate the notion of ‘active learning’, which has been promoted by researchers
from different disciplines for many years under different names [28], for example,
Constructivism [34]. Although, there are different theoretical positions attributed to
Constructivism, all of them basically consider learning to be an active process and

knowledge is constructed by the learner, based on past experience [22].

22

S. Mohanarajah and T. Sritharan
Start

| o
~
| Generate
Problem
Domain l
Expert Present
Problem
Computer Student
Solution ~—,| Compare [— Solution
Bug Solutions
Library Student
Present Advisor
Feedback
Update A/ Update
Student Learning
Skills Indicators

Boxes: program decisions & actions

Ellipses: program knowledge bases

Figure 3: Computer Based Learming Systeams (after [36])

5. LITERATURE REVIEW - CBLSYSTEMS FOR FORMAL METHODS

The software systems that are primarily designed for learning formal specifications fall into
two categories. The first category includes all the formal method tools that are claimed to be
useful for learning. They are, in general, developed by researchers in the formal specification
discipline. The second category includes systems which are principally developed for
pedagogical purpose by researchers in the CBL systems discipline. Each category will be
considered in turn.

a. Formal Method Tools for Teaching

There are more than hundred tools available for various formal methods. Especially
about thirty of them were created for the Z notation alone. Almost all of the tools provide
syntax directed editing facility so that a specification document may be created or edited
easily in the environment. Formalizer (Figure 4), for example, is a syntax-directed editor,
browser and type checker for Z notation. It does not have proof or refinement facility. In
pedagogical point of view, at maximum it gives short error reports. Almost all the other
tools meant for Z notation are similar to Formalizer.

23

JSc - EUSL (2016) Vol.7, P 19 - 34

The research literature related to the following software tools claims that they could be
used for learning formal methods: Zbrowser [31], ZAL/ZED [32], VisualiZer [40], and
ZTC/ZANS [20], [21]. Basically, they offer an environment for the users to actively
learn a specific topic through trial and error. All of these tools demand significant tutor
guidance for novices. Some of them, though primitive, do provide useful hints and feed-
back

4 3 [} - x
A relation of type ' -

{PERSCN +— PERSON)

was expected here

The type of € is: -

(P ?X? & P ?7X?)

Figure 4: Feedback in Formalizer

b. CBL Systems for Formal Methods

Despite the number of tools for aiding the development of specifications, surprisingly, there
appears to be no reference in the literature for CBL systems for formal methods. MEMO-II
[14] and FLUTE [8] are the only existing CBL systems found to be related to this research.

As noted by its authors, MEMO-II is intended for learning programming not for formal
specification. It is an education oriented programming environment, which allows users to
build programs from formal specifications via interaction with the system. P. Forcheri, and
M. T. Molfino [14] claim that learning to program requires modelling capabilities. A
programming problem may be modelled using two approaches. One is a computational model
depending on a programing paradigm, and the other is an abstract model independent of any
paradigms. Learning to construct abstract models helps software practitioners to switch
effortlessly between different paradigms. MEMO-II follows the second approach; and
additionally, [14] claims that it also offers facilities to map this abstract model into effective

implementations.

24

S. Mohanarajah and T. Sritharan

6. OUR APPROACH

Building CBL systems that facilitate ‘active learning’ for complex disciplines is considered
challenging. The complexity, however, could be reduced by employing educational aids such
as scaffolding [19]. In order to teach a complex discipline, when a similar but relatively easy
domain is already known to the learner, scaffolding may be applied using a gradual
transformation of learning materials from less complex to more complex disciplines. This
research investigates the ways and means of designing CBL systems for certain complex
domains that support active learning based on model transformation and employing scaffolding
techniques in order to reduce the difficulty associated with learning such disciplines. As an
exemplar, an object oriented formal notation Object-Z [37] and the semi-formal notation
UML [6] are selected as the subject and support domains, respectively. A semi-automated
transformation process is designed in this study in order to transform UML models to Object-
Z models.

The proposed CBL system is designed based on the Constructionist learning theory [33] -
which is an extension of constructivist learning theory [34]. In this approach, we encourage
and support the students to create new models based on the existing models. The students
will be active in making tangible models that will be meaningful to them in the current
context. Scaffolding will be used to help the students in this transformation process.

7. TRANSFORMING UML TO OBJECT-Z

Both UML models and Object-Z schemas have important similarities in their semantics.
They consider Class as a template that describes a set of similar objects, and also allow the
use of a Class as a type. In addition, both notations use reference semantics (unlike Z notation
— which use object/value semantics). S. K. Kim and D. Carrington [26] have carried out
extensive research on formalizing and transforming UML models using Object-Z notation.
Other significant contributions to the research in this specific area are integrating UML with
Object-Z [3]; formalizing UML with Object-Z [30]; integrating Object Modelling Technique
to Object-Z [12]; and defining UML constructs using Object-Z [39]. As stated previously,
Dong’s group [39] uses temporal logic for sequencing, but H. Miao, and L. Lui [30] use a
variable “order” to hold time related information (for sequence diagrams).

25

JSc - EUSL (2016) Vol.7, P 19 - 34

S. K. Kim and D. Carrington ([23], [24], [25] , [26], and [27]) have separately pui)lished
many papers on formalizing key UML constructs, including use case diagrams, state transition
diagrams, and class diagrams, and for inconsistency checking. S. K. Kim and D. Carrington
[27] explain their approach for transforming class diagrams in three steps. Firstly, they formalize
the syntax (and semantics) of UML constructs using Object-Z notation. Secondly, they
formalize Object-Z syntax (and semantics) using both class diagrams and Object-Z itself.
Thirdly, they define a mapping between these two constructs. Transforming static structure
of UML constructs (particularly class diagrams) will be discussed in detail in the next section.

In addition to the static structure of UML, some research attempts to formalize the dynamic
semantics of different UML constructs in Object-Z; for example, [30] for Sequence Diagrams,
[11] for Object Management Technology and [26] for State Diagrams. S. K. Kim and D.
Carrington [26] treat the dynamic semantics of UML (particularly for state diagrams) in two
parts; denotational semantics and operationa’ semantics. For the denotational semantics, they
include relevant invariants to Object-Z sta'e schema. For the operational semantics, they
introduce ‘semantic variables’ as additiona! attributes and define the operational semantics
using Object-Z operations. S. K. Kim and D. Carrington [24] claim that encapsu ating the
entire definition of an UML construct into 1 single construct (Object-Z class schen) makes
their approach unique amongst others v. ithin that type. Nevertheless, the mai i stream
researchers ([29], [28]) are now moving wards discussing the formal aspects . OMG’s
Model Driven Architecture (OMG 2006)

8. TRANSFORMING UML CL: SS DIAGRAMS

Being the major construct in UML, the research on transforming the class diagram has been
given much attention in research circles. There are various approaches to transforming key
constituents of the UML class diagram to Object-Z. N. Am’alio,and F. Polack [2], in their
survey, discuss a number of different ap proaches reported in main stream formal methods
literature for formalizing the UML class diagram to Object-Z (and Z). N. Am‘alio, and F.
Polack [2] generally compare S. K. Kim ind D. Carrington [23], approach with J. Araujo’s
[3], and to some extent, S. Dupuy’s [13]. In addition to these approaches, two others ([10],
[30]) are also included in the following uiscussion. In many ways, the following discussion
supplements N. Am‘alio, and F. Polack survey [2]. The Room-Key case study will again be
used as an illustration.

26

S. Mohanarajah and T. Sritharan

a. Identity
UML uses reference semantics. The early versions of Object-Z also used value semantics. In
value semantics, based on Hall’s approach [17], [18] the notion of ‘self” has to be defined

explicitly. For example, the Key object in value semantics is given in Figure 5.

Key

KEY
[KEY] |‘5e|f: Key

Figure 5: Value Semantics and Identity of an Object

Object-Z and UML both use reference semantics, and therefore the semantics for object
identity is the same for both. An Object could refer to itself using a built-in construct called
‘self” in Object-Z notation. Therefore, the object identities need not be defined as separate
types. Moreover, an Object schema is considered as a template and also as a type. In this
context, J.A. Hall’s [18] extension/intension differentiation is not applicable.

b. Visibility List

The UML class diagram allows 3 types of accessibility: public, private or protected. There is
no such protected access in Object-Z. Whilst transforming the UML classes to Object-Z
schemas, none of the above researchers explained how they would treat ‘protected’ variables.
J. Araujo’s [3] notes that the visibility list in Object-Z does not differentiate attributes and
methods. In addition to this, operation overloading is not possible in Object-Z, due to the
format of the visibility list.

c. Class Variables
In UML, class features may be included in a Class, and they are differentiated by just under-

lining. The values of class attributes are common to all the objects of that Class. There is no
equivalent construct in Object-Z. None of the research mentioned above touches on this issue

27

JSc - EUSL (2016) Vol.7. P 19 - 34

d. Construction/Destruction

UML classes may explicitly include constructors and destructors. Existential constraints in
an object’s link may affect its creation or destruction. Object-Z assumes that the objects are
always available in the environment. There is nothing to suggest in the literature as to how
this conflict will be resolved, during the transformation of Classes to Object-Z.

e. Association

Class diagrams (and E-R Diagrams) include class relationships, such as association. There is
no way to show association relationships in Object-Z and therefore, it should be resolved in
some way, in order to represent them in Object-Z schemas. Even in program code, there is no
way to explicitly include association. Basically, there are three approaches discussed in the
literature: local, recursive and central.

In the first approach, an object identity (or a collection of object identities — depending on the
multiplicity constraints) of the participating Classes are included as attributes into the Classes
of the opposite sides of the association link. Usually, role names will be used to name those
attributes. Depending on the navigational direction, if known, one side of the Class may not
need to keep the link, and therefore it may not include the relevant identities as attributes.
This approach is related to designing a database from E-R diagrams, where the corresponding
primary keys (instead of identities) are included in the relevant tables. Duke’s ([10], p. 42.)
‘local view” is a good example of this approach. R. Duke, and G. Rose [10] include a class

schema called *KeySystem” which consists of a mixture of properties of the relevant control
environment (in operation schemas) and the corresponding association (in state schema). It
can be noted that the ‘KeySystem” is a class schema but it will only have one instance.

3
Figure 6 illustrates the “local’ approach. For every room in the system key there is at
least a key. The features related to control environment (here the operation ‘insertKey’)v
may be separated. The operation ‘supplyID” will just return the identity of an object
‘self” - refer to [10]. The parallel operators are used to pass parameters. If the navigation
is on both sides, an attribute called keys may be included in the Room class. The ‘type’

of ‘keys” will be a collection of identities of Key objects, which represent the collection
of all the keys that open a particular room. |

28

S. Mohanarajah and T. Sritharan

Key Room
keylD: KEYID roomlD : ROOMID
room: Room key: Key
— KeyRoomASSandCTRL

allRooms: PRoom
allKeys: P Key

¥ r ' allRooms.3 keye allKeys. key.room=r
v k * allKeys.U k.roomC allRooms

msertKey =[r? : allRooms, k? : allkeys] . r? . supplyID || k? . open

Figure 6 : Formalizing Association Local

9. THE PROPOSED TRANSFORMATION PROCESS

In order to illustrate the process, here we considered a simple class diagram with no inheritance
hierarchy. There are only association relationships. Assume use cases are ranked based on
their importance.

Step-1: REPEAT steps 2 through 14, UNTIL there are no more important use cases
Step-2: Select the next important use case (initially select the most important use
case)

Step-3: Consider the corresponding sequence diagram

Step-4: REPEAT steps 5 through 10, UNTIL there are no more clusters in the sequence
diagram

Step-5 Select the next important cluster (initially select the most important cluster)

Step-6: REPEAT steps 7 through 9, UNTIL there are no more independent operations

in the cluster

Step-7: Select the next independent operation in the cluster (initially select the most
important operation)

Step-8: Generate the relevant class schema, if not generated before

Step-8.1: Complete the state schema (interact with user, if necessary)

Step-8.1.1: Specify attributes and types

Step-8.1.2: Specify dependent attributes

Step-8.1.2: Specify class invariant

29

JSc - EUSL (2016) Vol.7, P 19 - 34

Step-8.2: Complete the INIT schema (interact with user, if necessary)

Step- 8.2.1: Specify initial values for attributes

Step-9: Specify the operation schema (interact with user, if necessary)

Step-9.1: REPEAT UNTIL there are no sub-operations

Step-9.1.1: Select the next independent sub-operation

Step-9.1.2: Check the name, delta list, input and output variables

Step-9.1.3: Complete the declaration part

Step-9.1.4: Complete the prediction part (this is challenging)

Step-9.2 : Complete the operation schema

Step-10 : REPEAT Steps 11 through 13, UNTIL there are no more operations in the cluster.

Step-11: Incrementally select the next important operation that depends only on the
operations that are already considered

Step-12: REPEATUNTIL there are no more associations left\

Step-12.1: Select the next important association

Step-12.2: Generate the class schema at the other end (similar to Step-8)

Step-12.3: Include relevant attributes into both state schemas

Step-12.4: Recursively include relevant invariants into both state schemas

Step-13: Specify the operation specificatio i (similar to Step- 9)

Step 14: Complete Operation Schemas

Step-15: Consider alternative sequence diagrams (if any).

Even if there is no such diagram, alternate trivial use cases may be available. Check the use
case specification and the relevant operation specification. If so, modify the schemas

accordingly.

Step-16: Refine the schema

30

S. Mohanarajah and'T. Sritharan

10. PROTOTYPE FOR CBL SYSTEM

Software prototypes may be developed for different purposes, such as elicitating
requirements, evaluating interface design and for inspecting certain functional features
[38]. The prototype in this research is developed to serve two purposes; firstly, to
determine whether the proposed ideas in this research are technically feasible and
secondly, to verify that the implemented artefacts are practically useful. Due to the time
constraint, the interface design of the prototype is not a major focus.

A set of simple case studies are used in the CBL system. The case studies are ranked based on
their complexity. Initially, the case studies are given in English and the corresponding UML
models also available to the students. The students need to convert the UML models to Object-
Z schemas. The appropriate level of help will be provided by the semi-automated translation
system. As a student progresses, the level of direct support will be reduced, and eventually
they will be able to create formal schemas with the help of semi-automated translation system
only.

11. EVALUATION

The prototype was used to evaluate the key research proposals made in this research. In
particular, two hypotheses are considered important and related. The first hypothesis is about
the effectiveness of the overall strategy proposed for designing CBL systems for complex
domains using model transformation. For practical reasons a pre-experiment design is used

for objective evaluation.

A group of ten students were given a pre-test, and then asked to learn a concept using the
prototype. Later, a post-test was given. The performance of the students on both tests was
statistically analysed. The Student-t statistics for paired-samples was used at 0.05 significant
level. The test reveals that the post-test scores are significantly higher than the pre-test scores.
Another test confirmed that both the pre and post-tests were of the same level of difficulty.
The meta-analysis validated the test results. The effect size of the test was greater than 2 and
the power is greater than 8. Both values are reasonable compared to the similar research
reported in the literature.

31

JSc - EUSL (2016) Nol.7, P 19 - 34

12. CONCLUSION

Some disciplines are inherently complex and therefore challenging to learn. A suitable
instructional strategy is essential to realize this goal. This research shows that constructionism
can be effectively used for designing CBL systems for teaching Object-Z. In this approach,
students are encouraged to translate specifications in UML to Object-Z notation. Transforming
UML models to Object-Z models is easier than creating Object-Z models from scratch.
Scaffolding is used to help the students in this complex process. To the knowledge of the
authors, there is no step-by-step semi-automated methodology available to facilitate this
translation process. This research illustrated that the proposed step-by-step methodology to
transform UML Models to Object-Z specification is suitable for pedagogical purposes. This

research may be extended to cover complex UML models with inheritance hierarchies.

References

1] ACM-SE (2004), “Curriculum guicelines for undergraduate degree programs in
Software Engineering,” A volume of the Computing Curricula Series: 59.

[2] N. Am'alio, and F. Polack, (2003) “Analysis and Comparison of Formalization
Approaches of UML class construcis in Z and Object-Z,” ZB 20003, Turku, Finland,
LNCS, Springer.

3] J. Araujo and P. Sawyer, (1996) “Metamorphosis: An integrated object-oriented
requirement analysis and specifi.ation method,” Department of Computing,
University of Lancaster, UK.

[4] R. Barden, S. Stepney, and D. Cooper, (1994) “Z in Practice,” BCS Practitioner
Series. Prentice-Hall.

[5] F. Bennett, (1999) “Computers as Tutors: Solving the Crisis in Education.”
Educational Technology & Society 2(4) 1999, ISSN 1436-4522.

[6] G. Booch, J. Rumbaugh and 1. Jacobson, (1999) “The UML User Guide,” Addison-
Wesley.

(7] A. Brobert, (1999) “Learners as Knowledge Workers: Some Implications,”
Frontiers in Education, FIE’99, Puerto Rico, San Juan.

(8] V. Devedzic, J. Debenham, and D. Popovic,(2000) “Teaching Formal Languages
by an Intelligent Tutoring System,” Education Technology & Society 3(2).

9] R. Duke , P. King , G. Rose, and G. Smith, (1991) “The Object-Z specification
language version 1,” Technical Report, Software Verification Centre, Department

of Computer Science, University of Queensland, 1991.

[10] R.Duke, and G. Rose, (2000) “F ormal Object-Oriented Specification Using

Object-Z,” London, MacMillian. -

(1]

[12]

[17]

(18]

(19]

S. Mohanarajah and T. Sritharan

S. Dupuy, Y. Ledru, and M.Chabre Peccoud, (1998) “Translating the OMT
Dynamic Model into Object-Z,” ZUM’ 98.

S. Dupuy. Y. Ledru, and M.Chabre_Peccoud, (2000) “Integrating OMT and
object-Z.” BCS FACS/ EROS ROOM Workshop, technical report GR/K67311-2.
A. Evans and K. Lano, Imperial College, London.

S. Dupuy, Y. Ledru, and M.Chabre_Peccoud, (2000) “An overview of RoZ-a
tool for integrating UML and Z specifications.” 12th Conference on Advanced
information Systems Engineering (CAiSE’2000), Stock-holm, Sweden.

P. Forcheri, and M. T. Molfino, (1994) “Software Tools for the Learning of
Programming: A proposal.” Computers Education 23(4): 269-278.

M. Fowler, (1998) “UML Distilled; Applying the standard modelling language,”
Addison Wesley Longman Inc.

H. Garavel, and G. Susanne, (2013) * Formal Methods for Safe and Secure
Computer Systems,” BSI Study 875, Federal Office of Information Security,
Bonn, Germany, Retrieved from https://www.bsi.bund.de/Shared Docs/
Downloads /DE/BSI/Publikationen/Studien formal_methods_study_875
formal _methods_study 875. pdf? _blob=publication File.

J.A. Hall, (1990) “ Using Z as a specification calculus for object-oriented analysis.”
VDM’90- VDM and Z, B. Dines and C. Hoare, A, R, Springer Verlag.

J.A. Hall, (1994) “Specifying and Interpreting Class Hierarchies in Z.” ZUM"94,
Springer Verlag.

K. Hogan, and M. E. Pressley,(1997) “Scaffolding Student Learning: Instructional
Approaches and Issues.” The University of Albany, State University of New
York, BROOKLINE.

X. Jia,(1995) “A Tutorial of ZANS — A Z Animation System,” Chicago, DePaul
University.

X. Jia,(1995) “ZTC: A Type Checker for Z, User’s Guide.” Chicago, DePaul
University.

H. Kanuka and T. Anderson, (1999)”Using Constructivism in Technology-
Mediated Learning.” Radical Pedagogy 1(2).

S. K. Kim and D. Carrington, “Formalizing the UML class diagram using Object-
Z.” UML1999, LNCS1723 (Springer: Berlin): pp. 83-98.

S. K. Kim and D. Carrington, (2000) “A Formal Mapping between UML Models
and Object-Z Specifications.” ZB2000, LNCS1878 (Springer: Berlin): pp. 2-21.
S. K. Kim and D. Carrington, (2000) “UML Metamodel Formalization with
Object-Z: the State Machine Package,” Technical Report 00-29, SVRC. The
University of Queensland, Australia.

S. K. Kim and D. Carrington, (2002) “A Formal Metamodeling Approach to
transformation between the UML State Machine and Object-Z. " In International

33

[27]

(28]

(29]

[30]

(31]

[32]

[33]

(34]
[35]

[36]

[37]
[38]

(39]

[40]

JSc - EUSL (2016) Vol.7, P 19 - 34

Conference on Formal Engineering Methods (ICFEM 2002), Lecture Notes in
Computer Science. Springer- Verlag.

S. K. Kim and D. Carrington,(2005) “An MDA Approach towards

Integrating Formal and Informal Modeling Languages.” FM 2005, LNCS 2495
. Springer-Verlag, UK.

D. Laurillard, (2008) “E-Learning in Higher Education. Changing higher
education: The development of learning and teaching” (in press). P. Aswin.
London, Routledge: 71-86.

S.J. Mellor and M. J. Balcer, (2002) “Executable UML:a foundation for model-
driven architecture, Stephen J. Mellor, Marc J. Balcer. Boston, Addison- Wesley.
H. Miao, L. Lui, and L. Li, (2002) “Formalizing UML Models with Object-Z.”
International Conference on Formal Engineering Methods (ICFEM 2002),
Lecture Notes in Computer Science. Springer-Verlag.

L. Mikusiak, V. Vojtek, J. Hasaralejeko, and J. Hanzelova, (1995) “Z Browser -
Tool for Visualization of Z Specifications.” ZUM’95 - 9th International
Conference of Z Users, Springer- Verlag, 1995.

1. Morrey, J. Siddiqi, G. Buckberry, and R. Hibberd, (1993) “Use of a specification
construction and animation tool to teach formal methods.” IEEE COMPSAC
93, The Seventeenth Annual International Computer Software and Applications
Conference, Phoenix, Arizona, USA.

S. Papert, 1. Harel, (1991) “Situating Constructionism. Constructionism,” Ablex
Publishing Corporation: 193-206. Retrieved from http://www.papert.org/articles/
SituatingConstructionism.

J. Piaget, (1968) “Six Psychological Studies.” New York, Vintage Books.

V. J. Shute, and R. Glaser, (1990) “A large-scale evaluation of an intelligent
discovery world: Smithtown.” Interactive Learning Environments1: pp. 51-76.
V. J. Shute, and J. Psotka, (1995) “Intelligent Tutoring Systems: Past, Present,
and Future.” Handbook of Research on Educational Communications and
Technology. H. Jonassen, D., Scholastic Publications, .1995.

G. Smith, (2000) “The Object-Z Specification Language,” Kluwer Academic
Publishers.

1. Sommerville, (2001) “Software Engineering.” Harlow, England, Addison-
Wesley.

J. Sun, J. S. Dong, J.liu, and H. Wank, (2001) “Z family on the web with their
UML photos.” TRAI-01. Singapore, School of Computing, National University
of Singapore, 2001. ,

C. N. Yap, (1999) “Visual-Z: a Methodology and Environment for Developing
Visual Formal Z Specifications.” Ph.D. thesis.

34

