JSc EUSL(2018) Vol. 9 No. 1, p 31-49,

Print- ISSN: 1391-586X, E- ISSN: 2602-9030, Copyright © 2018 by Faculty of Science, Eastern University,
Sri Lanka.

A MATHEMATICAL AND NUMERICAL ANALYSIS OF A
COMPARTMENTAL MODEL FOR A SINGLE STRAIN DENGUE
EPIDEMIC IN THE PRESENCE OF VACCINATION

Madhusankha, B. H. 1., Ariyawansa, T. S. V.., and Perera, S. S. N.!

'Research & Development Centre for Mathematical Modelling, Faculty of Science, University
of Colombo, Sri Lanka

ABSTRACT

Dengue disease has presently emerged as an alarming public health concern of
mounting significance with the unprecedented number of cases reported worldwide
annually, especially from the tropics and subtropics. It is currently considered as
the most critical vector borne viral disease in the world due to the acute health,
social and economic issues that it causes in the endemic countries. Further, human
mobility, climate change, rapid urbanization and public unawareness have led to a
substantial dissemination of dengue in new geographical settings with explosive
outbreaks. Also, the disease burden has aggravated due to the unavailability of
specific clinical therapeutics and effective vaccines for the dengue disease. In such a
context, this paper intends to investigate the dynamics of dengue disease in the
presence of hypothetical vaccination strategies. Thus, we use a classical
compartmental model with mathematical and numerical analyses in order to
emphasize the importance of vaccination as an effective measure of disease control.
We are hence of the belief that this paper will be a source of motivation for the
medical scientists involved in the development of vaccine candidates for the dengue
disease.
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1. INTRODUCTION

In accordance with the World Health Organization (WHO), a study on the prevalence
of dengue estimates that 3.9 billion people in 128 countries around the world are
currently at risk for infection with the dengue virus [13]. Dengue disease has grown
dramatically in the recent past thus posing a devastating threat on the socio-economic
life of most of the countries in the tropical and sub-tropical regions of the world. It is an
infectious disease transmitted to humans mainly through the bites of female Aedes
aegypti mosquitos. Dengue is caused by four different serotypes of the DENV virus
group, namely, DENV 1, DENV 2, DENV 3 and DENV 4 which are serologically and
genetically related [12, 13]. An infection from one serotype gives life-long immunity
against that serotype, but an individual may get sequentially infected with thethree
remaining serotypes. There are three forms of the dengue disease as Dengue Fever
(DF) which is milder, and the more severe forms of Dengue Hemorrhagic Fever (DHF)
and Dengue Shock Syndrome (DSS) which reflect a high level of disease severity
requiring intensive medical care [12, 13].

Due to the unavailability of specific clinical treatments for dengue, vector control
measures are currently regarded as the mostly used measure of disease prevention [13,
14]. The medical scientists have thus been undertaking extensive research into the
development of a tetravalent vaccine which has the ability to provide life-long
immunity against all the four serotypes simultaneously [14]. At a time when the
attention of medical researchers is widely attracted towards the experimentation of
dengue vaccines, it appears to be of timely importance to explore the impact of
vaccination on the dynamics of dengue disease. Therefore, the objective of this study is
to analyze the changing dynamics of dengue disease in the presence of hypothetical
vaccination strategies. So, we use a compartmental model in order to examine the
dynamics of a single strain dengue epidemic under the effect of hypothetical
vaccination.

The classical compartmental model (referred to as the S/R model) is generally
composed of three basic compartments, namely, the Susceptible (S), Infected (/) and
Recovered/Removed (R) which represents a classification of the population according
to the health status (with respect to the disease) of the individuals at time t. This model
has been successfully used in the literature to examine single strain disease dynamics as
evident in such works as Derouich et al. [5], Esteva and Vargas [6], Yaacob [15], Side
and Noorani [9], etc., while the use of multi-strain epidemiological models appears in
Augiar et al. [1], Augiar et al. [2], Nuraini et al. [7], etc. The importance of vaccination
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has previously been taken into consideration in many works including Deroiuch et al.
[5], Augiar et al. [1] and Augiar et al. [2]. Epidemiologists, however, consolidate that
the single strain model is insufficient for a closer scrutiny of the complex and varying
dynamics of dengue disease, and have thus stressed the need for a minimalistic multi
strain dengue model, especially in explaining the complications governing secondary
dengue infections.

In our study, we conduct both mathematical and numerical investigations so as to
explore the impact of vaccination coverage and vaccine efficacy on the dynamics of
potential dengue epidemics. Strikingly, the study contributed to certain significant
findings on the importance of vaccination in the control of dengue disease. It is further
expected that this study will be of great interest to those engaged in the process of
developing vaccines against dengue. A detailed explanation of the model is presented
in Section 2. The mathematical analysis in Section 3 probes into some important results
on the basic reproduction number and the equilibria of the system of equations
pertaining to the present model. Moreover, the model simulations appearing in Section
4 focuses on a numerical study on the dynamics of dengue using the distributions of
infectives and phase plane diagrams subject to the variations of the chosen parameters.
Finally, the conclusion in Section 5 sums up the important results derived from the
exploration, and also provides certain suggestions for future research.

2. MODEL DEVELOPMENT
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Figure 1: The schematic diagram for the single strain host-vector dengue model.
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Figure 1 displays the classification of the human population into three mutually
exclusive compartments namely the Susceptible (S3), Infected (/) and Recovered (Rj),
and that of the vector population into two mutually exclusive classes: Susceptible (S,)
and Infected (/,). A recovered compartment for the vectors is not considered here due
to the very short life span of the mosquitoes. The rates of transfer between the
compartments are mathematically represented as derivatives of the sizes of the
compartments with respect to time, which yield systems of ordinary differential
equations. It 1s assumed that the size of the population is a large number, and remains
constant (i.e. birth rate = mortality rate) over the duration of the entire epidemic. Two
other important assumptions of the model are that the population is homogeneous, and
that the contacts between host and vector populations are also homogeneous [3,8].

The parameters pn and py denote the demography rates for the hosts and vectors
respectively. The recovery rate for humans is denoted by *. Further, C,, and Cy, are the
effective contact rates from vectors to humans and humans to vectors respectively, and
are given explicitly by the equations, Cp; = Punb and Cyp, = Py, b respectively. Here,
P, and Py, are the transmission probabilities from vectors to humans and humans to
vectors respectively, and b is the biting rate. In the present model which follows the
structure used by Derouich et al. [5], we introduce a vaccine efficacy factor (0) and a
vaccination rate (v), as in the two strain dengue model used by Augiar et al. [2]. The
vaccination coverage (p) represents the proportion of the population that is vaccinated
whereas the vaccine efficacy factor (0) parameterizes the effectiveness of the vaccine as
a percentage of the level of immunity that it provides with a vaccinated individual.
Further, we assume that the vaccine is implemented with vaccination rate v so that the

vaccination period is -. Also, the dynamics of human-vector interaction are presented in
v

the system (1).
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Now we introduce dimensionless quantities and reduce (1) to a system of three equations.

ds
]
d_:zncvhfufh—(#h""’“}fh -------- 2
diy

8 = Cruly (1= 1,) — pyl, where n = :—h and 0= S, 0,1, =1,

with initial conditions 5,(0) = 0,1,(0) = 0 and 1,(0) = 0.

3. MATHEMATICAL ANALYSIS OF THE MODEL

3.1 Basic Reproduction Number (Ry)

In epidemiology, the basic reproduction number, denoted by Ry, is defined as the
expected number of secondary infections generated by a single case in a completely
susceptible population during its entire infectious lifetime [10, 11]. So, the basic
reproduction number provides an idea regarding the initial spread of a disease in a
susceptible population in the presence of a single infectious individual. The higher the
value of Ry, the more transmissible the disease, and is hence more difficult to control
the epidemic [11].

3.2 Computation of the Basic Reproduction Number (Ry)

Now we calculate the basic reproduction number (Ry), which we use subsequently in
order to derive a condition for the stability of the equilibrium solutions of the system of
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equations in (2). The popular method known as the next generation matrix is used here
in order to compute Ry.

Since only the I} and I;; compartments contribute to the propagation of the disease, we

consider only those two compartments in composing the next generation matrix.
Observe that

Gain Iy =nC,1.5,, Loss Iy=(un +r)I, , GainI,=Cy.I; and Loss I,=Cp Byl 1, .

dlpGain Al Gain

: C . B I, 0 Crw
Then the Infection Matrix is given by F =| s, min 80 cain | = ( ?“)
i L ﬂth.Sh 0
dlnLoss  dlploss
.. .. am, 81, Wy t+r Cruly
and the Transition Matrix is V = = ( X
BlpLoss  Blploss 0 Chvfh +1t,,

The Next Generation Matrix is obtained as follows,

. - 1 ~Chely
G=FV-1 = ( rw) pactr (it (Chol 1)
T’.l:’:'uhsh 0 0 1
Choln +up
Substituting the virus free equilibrium E, = (Mfgﬁ 0, 0) (which we will derive in
Section 3.4) yields;
1 Chy
0 0 —
G=FV1= ( 0 Ch“) HRtT - H
nCy5, 0 o = nCphih
iy (uptriipp+8Py)

Since R, is defined as the spectral radius of &, we consider the characteristic equation

of & given by,

A nph Cph Ch
|G —M| =% - ——————=
pp (up+r)(up+8Py]

T
Hence we have A = + |— - th-hv

) wplpntr) (up+0Py)

[ munConC
Therefore, Ro = r(G) = |— Hh l::i“. hr .
) pelpntr) (ppt8Py)
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3. 3 Sensitivity of the Basic Reproduction Number with respect to the Vaccination
Parameters

The basic reproduction number is considered as an important tool in the mathematical
analyses of infectious diseases as this statistic provides significant insight into disease
dynamics. The value of Ry depends on the parameters used in the model. The
implications of the dependence of Ry on such parameters are pivotal in understanding
disease spread and planning intervention strategies. So, we present the following
important proposition on the relationship between the basic reproduction number and
the three vaccination parameters in the model.

Proposition 1: R, is a decreasing function of the vaccination coverage (P), vaccine
efficacy (8) and vaccination rate (v).

M?-Cmfm

Bv(py, + 8Pv) 32
( ) vk )" -\J ppluntr)

Remark 1: Note that the partial derivative oK <0,

g Rn H#hfuhfhu

- < 0and
-\J upluptr)

= -( ) PV(uy, + 8Pv)3/2

i~y T l_'_-. f__ 1
POy + 6Py) 32 |TERERRE o
( ) (ks i -\JI pylpptr) 0.

E'RD

Proposition 1 indicates that the dengue disease can greatly be controlled by taking such
measures as widening the cohort of the population that is vaccinated, enhancing the
efficacy of the vaccines administered, and increasing the vaccination rate. The
implication here is that vaccination is an effective measure of controlling the spread of
dengue.

3.4 The Existence and Stability Analysis of Equilibria in the Model

In the present segment, we examine the equilibrium solutions of the system of ODE’s
in the model, and attempt to interpret them in relation to the nature of the epidemic. So,
we have the following important propositions.

Proposition 2: Let A = {(Sp 0, 1,); 0=1, =1,0=I,,0 = S, (%9“) S, +1, = 1.
Then the system (2) comprises of two equilibrium solutions namely the disease free

equilibrium £, = (ﬁ , 0, 0 ) and the endemic equilibrium E; =
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1 = 1
(i,w_l_r;,nt_w‘z}where X = pup+uya+rit, Y = u,+0Pv+nC,, Z
=nCupy, — (uy + 1), + 6PVt and *r1=:f:, =;TD'
4 1P

Proof: Consider the system (2). For equilibrium points we have,

Hr— (.P“h + 8P + Tlf.'vhfl,jlsh =10

nCplpSp— (pp+rly=0 e 3)

Chz:fh(-l_ f::}_.ll-‘!'zrfv: 0

1 =z 1 =

. cn - MR _x =
By simplifying, we have E, = {Hh+ﬂ1tw’ 0,0),and E; = (;, T b

where X =pp+ (up +7)t, Y = up + 8Pv +nCy and Z =nCppptn, — (up + 7)(uy + 6Pv)E

Remark 2: The disease free equilibrium £, relates to the disease free state where the
disease dies out leaving the population free from the infection while the endemic
equilibrium E; corresponds to the endemic state where the disease takes hold in the
community.

Proposition 3: The endemic equilibrium disappears for R, = 1, thus leaving the disease
free equilibrium the only equilibrium point of the system. For R, = 1, the endemic
equilibrium also becomes an equilibrium solution of the system.

Proof: Observe that
Z = nCuuy— (pp+ r){u, + 6Pv Mo _ nCoppts [1— HuL#Hr}tp&thv}] _

s Che nph Cph Chp
NGyt (1 —R—g) =0

only if B, = 1.
Thus E; exists only for B, = 1. ®

Remark 3: Proposition 3 suggests that the disease will fade away if R, = 1, and that
the disease will persist (i.e. there will be an epidemic) if B, = 1.

Proposition 4: E; is locally asymptotically stable for R, = 1.
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Proof: The Jacobian matrix for Ej reads as,

» . Hh
—(}J.h + EPL} 0 nth T
Ey = _ Hh
J“: G} 0 (“h + T} HCM T
0 Chu —Hy

The characteristic equation of J(E,) is agh® + a;AZ + a;A+az; =0
where ag=1,a; = p,+ 2u, +7r+8Pv, a;=
(up + OPV) (py + iy +7) + [Hu‘:ﬂh +7) — nChyCon

(uy + 6Pv) I:.II"‘!'L (g + 1) — nChyy Ciy M_TEPJ

Wh
and @g=
wn+8Py ] ch

Then the eigenvalues of J{E,) are given by,

..]11 = _(.II"L?E + EPT-"}

- - { -
—y iy + T.} + *JI(J'LL' + it T} “—4 [.u'z:(iu'h +T} - ﬂchuczth]

up+8Pw
A, =
) 2
sttt 1) =[G+ s+ 10 = 4+ 1) = G 2
}La =

2

E, is locally asymptotically stable if all three eigenvalues have negative real parts.

Notice that A is a real number and # =< 0. Further, it is easy to verify that
Ay < 0and iy < 0forR, = 1.

Thus the proposition.®
Proposition 5: E is globally asymptotically stable for B, = 1.

Proof: In order to establish the global stability of E;, we construct a Liyapunov
function by appropriately modifying the Liyapunov function given by Derouich et al.

[5].
Consider the continuously differentiable function ¥: 4 = & given by

G +8p
y =Gy, (297
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Observe that V(Ey) = 0 and V(x) > 0 for x € A— {Ey}. Thus, V is positive definite.

dWvi x}

Now we need to show that ——= < 0 for x € A —{Ey}.

Let x € A—{E,}. Then we have

c.!v-ix} r:l,;, dly + (Mwm) dix

Up+8re

&
= 2 (Chul (1= 1,) = puly) + (P) (nConl S~ (bt + PI)

+8Pv nChpCph el puptr) up+800)
= —(nCon (1 — (B==) 50 ) 1 + —1+1)}.
{nCon Hi . by ( n ik Chp Coh n}

up+EPe
fh

It is easy to observe that 1— ( )5 r = 0 by the definition of the set A.

. Cuptrd (up+8pw) 1
Further, B, = 1 yields 2222 —1==—-1>0,
> y nppChyCoh R2
avi
A g
dt

Thus the existence of the Liyapunov function concludes the proof. ®
Proposition 6: E; is locally asymptotically stable for Rp> 1.

Proof: The Jacobian matrix for E; 1s,

—(uy, + 6PV + %} 0 —m:!,hf

z X

J(Ey) = p —(pp + T"} nCun
_ N _Chw 42
0 Chll‘(-l nCph R':} (.II"‘!'IZ' + ':,'.-Lih_+?":|}.'t"

The characteristic equation of J{(Ey)is agh? + ayA* + a;A + a3 = 0 where

) Chy &
ag=1,a; = 2u, +pu, +7r+ 6Py + 2 +',up.+r}}1”
a2=Chv§+(_u,h+6Pv )(ph+pb+r+ C?"'r}]yj and ag = Cp,.Z .

Local stability of the point is satisfied if all eigenvalues have negative real roots.

According to Routh-Hurwitz criterion, all roots of P(A) have negative real parts if
21 = ﬂ,ﬂ-g = U_.ﬂa =0 and 2qa = Q3.
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Since £ = 0 for R, > 1, it is easy to observe that a; > 0,a; = 0,a3 = 0.

Further 1t can be shown that

Z  Cw Z z z
a0, = (2 +p, +r+ 8Pv + P I:#:::r};} [E'm,; + (p.h + 8Pv + E) (.u.h +pu,+r+
Ch 5)] '
(uptrl ¥

=CpZ+k > CpoZ =azwhere k = 0.

Thus E; is locally asymptotically stable for B, = 1. ®

S. NUMERICAL RESULTS AND DISCUSSION

In order to numerically solve the systems of ODE’s in the model, we use the ode45
function which is the standard solver of MATLAB for ordinary differential equations.
The ode45 function is based on a Runge-Kutta method which uses a variable time step.
For the analysis, we vary the parameters p and 0 in the model, and then observe the
consequent effect on the spread, prevalence and magnitude of potential epidemic
outbreaks. First, we observe the changing behavior of the curves of infected humans
(Ix) and infected vectors (/,) subject to the variation of vaccination coverage (p) and
vaccine efficacy (0). Then, we use the rand () function in MATLAB in order to obtain
the mean and standard deviation of the distribution of infectives in both human and
vector populations over a period of one year. The rand() function on MATLAB was
used to randomly vary the parameters p and 6 in the specified range. Finally, we study
the behavior of two important phase portrait simulations. The initial conditions for the
three variables [Sy, In, I,] are given by the vector [0.9999, 0.0001,0]. A description of
the parameters and their values used in the present simulations are given in Table 1.
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Table 1: The set of parameters for the single strain epidemiological model with
descriptions, values and references.

Parameter Description Value Reference
[T Death rate of humans 1/25000 [5]
7. Death rate of vectors 1/4 [5]
T Recovery rate 1/14 Assumed
P Transmission probability from vectors to 0.7 [4]
humans
Py Transmission probability from humans to 0.07 [4]
vectors
b Bites per mosquito per day 0.3333 [4]
Con Effective contact rate from vectors to humans 0.2333 -
Cre Effective contact rate from humans to vectors 0.0233 -
F Vaccination coverage 0.8 Assumed
v Vaccination rate 1 Assumed
g Vaccine efficacy 0.8 Assumed
n Number of vectors per capita 10 Assumed
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Figure 2: The variation of the infected human profile with respect to the variation of p.

Figures 2 and 3 illustrate the variation of the pools of infected humans (/) and infected
vectors (/,) respectively over a period of one year for varying values of p =0, 0.2, 0.4,
0.6, 0.8, 1.0. Further, Figures 4 and 5 present the variation of the reservoirs of infected
humans (/;) and infected vectors (/,) respectively over a period of one year for varying
values of 6 =0, 0.2, 0.4, 0.6, 0.8, 1.0.

| | | |
a0 100 150 200 250 300 3580 400

Figure 3: The variation of the infected vector profile with respect to the variation of p.
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Figure 4: The variation of the infected human profile with respect to the variation of 0.

a0 100 150 200 250 300 350 400
t

Figure 5: The variation of the infected vector profile with respect to the variation of 0.

Figures 2 and 3 propose that the higher the vaccination coverage (p), the shorter the
peak point of the outbreak over the period concerned. Moreover, Figures 4 and 5
signify that the stronger the efficacy of the vaccine, the lower the number of infections
in both human and vector populations. So, the Figures 2, 3, 4, and 5 establish the
importance of vaccination as an effective measure of disease control. It is also
important that the vaccine efficacy has an almost equal impact on the reduction of
infections as the vaccination coverage.
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Figure 6: The variation of the infected human profile under the random variation of p
over [0.6, 0.8].

i i i i
-50 0 a0 100 150 200 250 300 350 400

Figure 7: The variation of the infected human profile under the random variation of 6
over [0.6, 0.8].

Figures 6 and 7 simulate the variation in the mean value of the size of the infected
human population over a period of one year with respect to the random variation of p
and 0 respectively over the interval [0.6, 0.8]. The mean curves with error bars in
Figures 6 and 7 reveal that the points on the mean curves are not subject to much
variation thus establishing the reliability of the mean values on the curve. In fact, the
variations almost disappear after a few days following the peak points. It can further be
observed that the shape of the mean curves generated by the random variation of p and
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0 (Figures 6 and 7 respectively) over [0.6, 0.8] are quite the same as those in Figures 2
and 4. This accounts for the reliability of the curves in Figures 2 and 4, and hence it is
appropriate to expect such a behaviour in general for potential epidemic situations.

Figures 8 and 9 present the phase plane trajectories of susceptible humans vs. infected
humans and infected vectors vs. infected humans respectively over a period of one year
for varying values of p =0, 0.2, 0.4, 0.6, 0.8, 1.0.
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Figure 8: The S;— I, phase plane portrait with respect to the variation of p.
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Figure 9: The /,— I phase plane portrait with respect to the variation of p.

The phase diagrams in Figure 8 read from right to left, because the reservoir of
susceptibles is initially at a proportion closer to 1, and then it starts depleting with time
as they become infected with the virus. It can be observed that in Figure 8, I, increases
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steadily up to a maximum value as S decreases, and then /; dwindles a bit more rapidly
with S; approaching zero. In the curve corresponding to p = 0, we observe that the
epidemic ends before all the susceptibles disappear. Further, the curves pertaining to
the increasing values of p reveal that the magnitude of the epidemic is comparatively
lower for higher values of the vaccination coverage (p).

Figure 9 demonstrates that the number of infected humans increases as the pool of
infectious mosquitoes grows. The curves in Figure 9, hence, establish the positive
correlation between the variables /; and I,. Moreover, the phase diagram in Figure 9
also substantiates the fact that the higher the vaccination coverage (p), the lower the
intensity of the epidemic.

6. CONCLUSION

In the present paper, we used an SIR type compartmental model in order to analyze the
dengue disease dynamics in the single strain structure under the effect of hypothetical
vaccination. We were able to derive certain important results concerning the spread and
prevalence of dengue epidemics through the mathematical analysis and numerical
simulations carried out under the current study. The findings of the paper suggest that
potential dengue epidemics can be controlled to a great extent with the administration
of a considerably effective vaccine to a large proportion of the population. It is also
emphasized that enhancing the efficacy of the vaccines is as important as increasing the
vaccination coverage. Further, the importance of vector control measures in addition to
the vaccination of hosts is also highlighted in the paper.

Most importantly, the model and analysis used herein may be modified appropriately in
order to suit different scenarios. This model, however, is based on the assumption that a
person who recovers from a dengue infection, will not be re-infected with the virus (i.e.
it is assumed that only one dengue strain is present in the scenario). So, it is possible to
further extend the model to a two-subtype structure in order to explain the dynamics of
multi-strain co-existence. It is anticipated that this research project will prove to be
interesting in the context of the dire need for a productive vaccine in the elimination of
dengue disease infections. So, we wish to emphasize the significance of an effective
vaccine in the global dengue prevention goals, and also to highlight the strengths of
compartmental models in the mathematical modelling of infectious diseases
epidemiology.
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